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Abstract This paper gives a concise summary of the general theoretical framework suitable to
describe shells with solid-like and liquid-like behavior. Thin shell kinematics are considered and
used to derive the equilibrium equations from linear and angular momentum balance. Based
on the mechanical power balance and the mechanical dissipation inequality, the constitutive
equations for the hyperelastic material behavior of constrained shells are derived, and their
material stability is examined. Various constitutive examples are considered and assessed for
their stability. The governing weak form of the formulation is derived and decomposed into in-
plane and out-of-plane components. The presented work provides a very general framework for
a unified description of solid and liquid shells and illustrates what leads to their loss of material
stability. This framework serves as a basis for developing computational shell formulations
based on rotation-free shell discretizations. Therefore the full linearization of the formulation
is also presented here.

Keywords: area incompressibility, linearization, lipid bilayers, material stability, rotation-free
shell formulations, thin shell theory

1 Introduction

The aim of this work is to provide a concise yet general and unified theoretical framework
for both solid and liquid shells that is suitable for their numerical description using intrinsic,
rotation-free surface discretizations.

A large literature body exists on theoretical shell formulations, even for the general cases of
arbitrary surface geometries, large deformation and nonlinear material behavior. The scope of
these models can for example be found in the texts of Naghdi (1982), Pietraszkiewicz (1989)
and Libai and Simmonds (1998), and the references cited therein. In those works the focus lies
on solid shells that exhibit classical solid-like material behavior such as elasticity. In contrast
to those, some shells exhibit liquid-like behavior. An important example are lipid bilayers
forming cell membranes. Those membranes provide elastic resistance to bending, while the
in-plane membrane behavior is that of a fluid – there is flow without static resistance. Such
behavior cannot be described adequately by solid shell models. Instead, a generalization of the
formulation is required that accounts for the constitutive behavior of liquid shells, such as cell
membranes. In general this behavior is characterized by solid-like deformation and fluid-like
flow. As a first step, we will restrict ourselves here to the quasi-static setting, and present
a unified shell formulation for that. A particular focus in our presentation is to account for
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the area-incompressibility of the shell, as this is a common assumption used for liquid shells.
We will further restrict ourselves to thin shell theories of the Kirchhoff-Love type that neglect
shear-deformations over the shell thickness. Those theories can be obtained by constraining
the general shell kinematics (Steigmann, 1999b). They are interesting from the computational
point of view, as they allow for straightforward, yet efficient and accurate discretization methods
based on isogeometric analysis (Kiendl et al., 2009). The development of such computational
methods, eventually in the context of dynamic flow, is the motivation behind this paper.
The description of liquid shells goes back to the bending models of Canham (1970) and Helfrich
(1973), which have then been used in many subsequent studies. The models can be embedded
into the framework of general shell theories (Steigmann, 1999a), which is the description we
follow here.

Compared to earlier approaches our work contains the following novelties and merits:

• a concise theory, applied to a wide range of different constitutive models considering
constrained solids and liquids,

• the investigation of the stability of those models,

• the stiffness tensors of those models, which are required for linearization,

• the weak form considering a split into in-plane and out-of-plane contributions,

• the analytical solution for a sheet under pure bending and homogeneous stretching.

The remainder of this paper is structured as follows: Sec. 2 summaries the major kinematical
measures required to describe thin shells. Those are then used in Secs. 3 and 4 to derive the
equilibrium and constitutive equations considering hyperelasticity. A large range of constitutive
examples – considering quasi-static solid and liquid material behavior – is examined in Sec. 5.
Sec. 6 then presents the weak form governing those shell models. The models are applied to a
simple analytical example in Sec. 7. The paper concludes with Sec. 8.

2 Thin shell kinematics

This section discusses the kinematics of deforming surfaces and examines the influence of vari-
ations of the deformation. The general framework provided by curvilinear coordinates is con-
sidered.

2.1 Curvilinear surface description

Consider a general surface S embedded in 3D space. Points on the surface can be described by
the mapping

x = x(ξα) , (1)

where ξα, α = 1, 2 are curvilinear coordinates. Given this surface parameterization, we can
obtain the co-variant tangent vectors aα = ∂x/∂ξα, the metric tensor with co-variant compo-
nents aαβ = aα · aβ and contra-variant components [aαβ] = [aαβ]−1, the contra-variant tangent
vectors aα = aαβaβ, the area change da = Ja dξ1 dξ2 with Ja =

√
det aαβ, the surface normal

n = (a1 × a2)/Ja, the parametric derivative of aα, as aα,β = ∂aα/∂ξ
β, and the co-variant

derivative of aα, as aα;β = (n⊗n)aα,β. The latter can also be defined through the Christoffel
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symbols Γγαβ = aγ ·aα,β. The triads {a1,a2,n} and {a1,a2,n} form bases to decompose vectors

v ∈ R3 into their in-plane and out-of-plane components, written as

v = vα aα + vn = vα a
α + vn , (2)

where v = v · n is the vector component along n, and vα = v · aα and vα = v · aα are the
co-variant and contra-variant vector components. The co-variant derivative of v is equal to
the parametric one, implying the four identities n;α = n,α, v;α = v,α, (vαaα);β = (vαaα),β
and (vαa

α);β = (vαa
α),β. Similar decompositions to (2) follow for higher order tensors. Two

important second order tensors are the surface identity tensor,

1 = aα ⊗ aα = aα ⊗ aα , (3)

and the full identity in R3,
I = 1 + n⊗ n . (4)

Another important object is the curvature tensor b = bαβ a
α ⊗ aβ with the co-variant compo-

nents
bαβ = n · aα,β = −n,β · aα , (5)

the mixed components bαβ = aαγ bγβ and the contra-variant components bαβ = bαγ a
γβ. It appears

in the formulas of Gauss,
aα;β = bαβ n , (6)

and Weingarten,

n,α = −bβα aβ , (7)

and defines the mean curvature of S,

H :=
1

2
bαα =

1

2
aαβ bαβ , (8)

and the Gaussian curvature of S,

κ :=
1

2
eαβeλµbαλbβµ

1

a
=
b

a
, (9)

where
a = det[aαβ] , (10)

b = det[bαβ] , (11)

and

[eαβ] =

[
0 1
−1 0

]
(12)

is the so-called unit alternator. From H and κ we can find the principal surface curvatures

κ1/2 = H ±
√
H2 − κ , (13)

such that 2H = κ1 + κ2 and κ = κ1 κ2. The unit alternator is useful for inversion. If cαβ
are the co-variant components of a tensor c that is invertible in the tangent plane, then the
contra-variant components of its inverse are given by

cαβinv =
1

c
eαγ cδγ e

βδ , c = det[cαβ] . (14)

In particular we thus have

aαβ =
1

a
eαγ aγδ e

βδ . (15)
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According to the Cayley-Hamilton-theorem, the tensor c satisfies the identity

cγγ aαβ − cαβ = c̃αβ , (16)

where c̃αβ :=
c

a
cαβinv are the contra-variant components of the adjugate tensor. For the curvature

tensor in particular we find

2H aαβ − bαβ = κ bαβinv , (17)

bαγ bβγ = 2H bαβ − κ aαβ , (18)

and
bγα bγβ = 2H bαβ − κ aαβ . (19)

From (15) we can further find

a =
1

2
eαγ eβδ aαβ aγδ . (20)

2.2 Surface deformation

In order to describe the deformation of surface S, we introduce a reference configuration, denoted
S0, that will typically agree with the initial, undeformed configuration of S. The reference
configuration is described by the mappingX = X(ξα). The same kinematical surface quantities
introduced above can be obtained in analogy for X ∈ S0. We will distinguish those using either
capital letters or subscript ‘0’. The deformation map between S0 and S, denoted x = ϕ(X), is
characterized by the surface deformation gradient

F := aα ⊗Aα , (21)

obtained from dx = F dX, and the area change da = J dA, where J denotes the surface stretch
defined by J = Ja/JA and JA =

√
detAαβ. If the number of surface particles is conserved during

deformation, as we will consider here, we have

ρda = ρ0 dA , (22)

such that
J =

ρ0
ρ
, (23)

where ρ and ρ0 are the surface densities at x and X . The left and right Cauchy-Green surface
tensors follow as C = F TF = aαβA

α ⊗Aβ and B = FF T = Aαβ aα ⊗ aβ. Evaluating their
trace I1 := C : 10 = B : 1, where 10 = Aα ⊗Aα analogous to Eq. (3), gives

I1 = Aαβaαβ . (24)

2.3 Variation of kinematical quantities

For the theoretical developments in the subsequent sections, the variation of several kinematical
quantities is required. We therefore consider a variation of position x on surface S by the amount
δx and examine how it affects various kinematical quantities. Partly similar examinations can
be found in Steigmann et al. (2003) or recently in Sauer (2016). The variation of the tangent
vectors and its parametric derivative become δaα = δx,α and δaα,β = δx,αβ, so that

δaαβ = aα · δaβ + δaα · aβ (25)
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and
δbαβ = aα,β · δn+ n · δaα,β (26)

or
δbαβ = −δn,α · aβ − n,α · δaβ . (27)

The variation of the normal is

δn = −aα(n · δaα) = −(aα ⊗ n) δaα , (28)

e.g. see Wriggers (2006), such that

δbαβ =
(
δaα,β − Γγαβ δaγ

)
· n . (29)

The variation of aα is
δaα =

(
aαβ n⊗ n− aβ ⊗ aα

)
δaβ , (30)

e.g. see Sauer (2016). From Eq. (20) follows

δa = a aαβ δaαβ , (31)

and therefore

δJ =
∂J

∂aαβ
δaαβ =

J

2
aαβ δaαβ . (32)

From Eq. (15) we get
δaαβ = aαβγδ δaγδ (33)

with3

aαβγδ :=
∂aαβ

∂aγδ
=

1

2a

(
eαγeβδ + eαδeβγ

)
− aαβaγδ . (34)

From a component-wise comparison it can be further shown that

aαβγδ = −1

2

(
aαγaβδ + aαδaβγ

)
. (35)

It is noted that aαβγδ has major and minor symmetries. Contracting aαβγδ with any symmetric
tensor with components cγδ, yields

aαβγδ cγδ = −cαβ . (36)

For this particular operation aαβγδ may then be replaced by −aαγaβδ.
The variation of the mean curvature yields

δH =
1

2
δaαβ bαβ +

1

2
aαβ δbαβ . (37)

Using Eqs. (33) and (36) gives

δH =
∂H

∂aαβ
δaαβ +

∂H

∂bαβ
δbαβ , (38)

with
∂H

∂aαβ
= −1

2
bαβ ,

∂H

∂bαβ
=

1

2
aαβ .

(39)

3In previous papers (Sauer et al., 2014; Sauer, 2014, 2016) we had used the quantity mαβγδ = 2aαβγδ.
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The variation of the Gaussian curvature gives

δκ =
1

2
eαβeλµ δbαλ bβµ

1

a
+

1

2
eαβeλµ bαλ δbβµ

1

a
− 1

2
eαβeλµ bαλ bβµ

1

a2
δa . (40)

Using (9), (14) and (31), this can be rewritten into

δκ =
∂κ

∂aαβ
δaαβ +

∂κ

∂bαβ
δbαβ , (41)

with
∂κ

∂aαβ
= −κ aαβ ,

∂κ

∂bαβ
= κ bαβinv = b̃αβ .

(42)

Further, we will need δbαβ. Taking the variation of bαβ = bγδ a
γα aδβ yields

δbαβ = bαβγδ δaγδ − aαβγδ δbγδ , (43)

with

bαβγδ := −1

2

(
aαγ bβδ + bαγ aβδ + aαδ bβγ + bαδ aβγ

)
. (44)

From a component-wise comparison, it can be shown that bαβγδ is also equal to

bαβγδ = 2H
(
aαβ aγδ + aαβγδ

)
−
(
aαβ bγδ + bαβ aγδ

)
. (45)

From Eq. (43) we can then identify the derivatives

∂bαβ

∂aγδ
= bαβγδ ,

∂bαβ

∂bγδ
= −aαβγδ .

(46)

3 Equilibrium

This section discusses the equilibrium and balance conditions for shells. As an intial step we
need to introduce sectional forces and sectional moments.

3.1 Sectional forces and moments

Consider an infinitesimal surface element da, located at x and aligned along a1 and a2 as is
shown in Fig. 1. On the cut surfaces the distributed4 sectional force and moment components
Nαβ, Sα and Mαβ are defined as shown. The sectional forces are collected in the stress tensor

σ := Nαβ aα ⊗ aβ + Sα aα ⊗ n , (47)

such that the traction vector on the cut normal to ν is given through Cauchy’s formula

T := σTν . (48)

4per current length of the cut face
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Figure 1: Components of the traction and moment vectors T 1, T 2, M1 and M2 defined on the
faces normal to a1 and a2 (top). Components of the physical moment vector m acting on the
same faces (bottom).

With ν = να a
α we can write T = T α να, where

T α := σT aα = Nαβ aβ + Sαn , (49)

are then the tractions defined on the face normal to aα, see Fig. 1.
The distributed section moments are collected in the moment tensor

µ := −Mαβ aα ⊗ aβ , (50)

such that we can define the distributed moment vector

M := µT ν (51)

on the cut normal to ν. Similar to before we can write

M = Mα να , (52)

with
Mα := µT aα = −Mαβ aβ . (53)

The components of −Mα are shown in the top right inset of Fig. 1. Vector M is introduced
for convenience. The moment vector physically acting on the element is given be the rotated
quantity

m := n×M . (54)

Inserting (52) and (53), and using the identity

aβ × n = τβ ν − νβ τ , (55)
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we find
m = mν ν +mτ τ (56)

with the local Cartesian components

mν := Mαβ να τβ ,

mτ := −Mαβ να νβ .
(57)

The vector M can then also be written as

M = mτ ν −mν τ . (58)

The bottom inset of Fig. 1 shows the vector m acting on faces aα.

3.2 Balance of linear momentum

Let us now consider a part of the surface S denoted P. We denote the body forces (per current
surface area) acting on P by f , and we assume that the boundary of P is smooth. For every
such surface part, the change of its linear momentum is equal to the external forces acting on
it, i.e.

D

Dt

∫
P
ρv da =

∫
P
f da+

∫
∂P
T ds ∀P ⊂ S . (59)

Here D/Dt denotes the material time derivative, and v is the material velocity at x. With the
local conservation of mass (22) and Stokes theorem∫

∂P
T α να ds =

∫
P
T α;α da , (60)

we immediately arrive at the local form of (59),

T α;α + f = ρ v̇ ∀x ∈ S , (61)

which is the strong form equilibrium equation at x ∈ S. It can be decomposed into in-plane
and out-of-plane contributions by using (49) to find

T γ;γ = (Nγα
;γ − bαγ Sγ)aα + (Sγ;γ + bαγN

αγ)n . (62)

Decomposing the external force f = fα aα+pn and material acceleration v̇ := a = aα aα+ann
we then find the in-plane equilibrium equation

Nγα
;γ − bαγ Sγ + fα = ρ aα , (63)

and the out-of-plane equilibrium equation

Sγ;γ +Nαγ bαγ + p = ρ an . (64)

For an alternative derivation of these equations, see for example Jenkins (1977).
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3.3 Balance of angular momentum

For every surface part P ⊂ S, the change of angular momentum is equal to the moment of the
external forces, i.e.

D

Dt

∫
P
ρx× v da =

∫
P
x× f da+

∫
∂P
x× T ds+

∫
∂P
mds ∀P ⊂ S . (65)

As usual for mass conservation

D

Dt

∫
P
ρx× v da =

∫
P
ρx× v̇ da . (66)

Stokes theorem now gives∫
∂P
x× T ds =

∫
P

(
aα × T α + x× T α;α

)
da , (67)

and, due to (54), (52) and (53),∫
∂P
mds =

∫
P

(Mβα aα × n);β da . (68)

Using (6) and (7), the last equation expands into∫
∂P
m ds =

∫
P

(
Mβα

;β aα × n− b
β
γM

γα aα × aβ
)

da . (69)

Employing (61) and (49) and using the equations (66), (67) and (69) from above, the balance
of angular momentum (65) thus gives∫

P
aα ×

[(
Nαβ − bβγMγα

)
aβ +

(
Sα +Mβα

;β

)
n
]

da = 0 ∀P ⊂ S . (70)

This is satisfied if and only if
σαβ := Nαβ − bβγMγα (71)

is symmetric and
Sα = −Mβα

;β . (72)

The last equation expresses the well known Kirchhoff-Love result that the out-of-plane shear
component follows as the derivative of the bending moments. It turns out that apart from σαβ

also Mαβ is symmetric, see Sec. 4.3. According to relation (71), the in-plane stress component

Nαβ = σαβ + bβγM
γα (73)

is influenced by bending. Due to this, Nαβ is generally not symmetric. This influence is a high
order effect, that vanishes for flat plates when bβγ → 0. It also vanishes for very thin shells,
since, even for large deformations, typically σαβ ∼ ET while Mα

β ∼ ET 3, where E is Young’s
modulus and T is the shell thickness. This is illustrated further in the example of Sec. 7.

3.4 On the application of boundary moments and tractions

At the boundary of the shell surface, essential and natural boundary conditions – the latter for
tractions and bending moments – can be applied. It is well known that Kirchhoff-Love shells
cannot support independent boundary moments and tractions. The moment mν , introduced in
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(56), is perceived as an effective traction acting together with T at the boundary. This can be
seen by looking at the integral of m appearing in (65). We therefore note that since ν = τ ×n
and τ = ∂x/∂s, we have

mν ν = (mν x× n)′ − x× (mν n)′ , (74)

where (...)′ := ∂.../∂s. The first part integrates to zero over a smooth and closed boundary,
such that we obtain ∫

∂P

(
x× T +m

)
ds =

∫
∂P

(
x× t+mτ τ

)
ds , (75)

with the effective traction
t := T − (mν n)′ . (76)

Over a non-smooth boundary containing corners, the second part in t will integrate to point
loads acting at the corners, e.g. see Steigmann (1999b).
Altogether, the following boundary conditions can thus be prescribed on the shell boundary
∂S = ∂xS ∪ ∂tS ∪ ∂mS

x = ϕ̄ on ∂xS ,
t = t̄ on ∂tS ,
mτ = m̄τ on ∂mS ,

(77)

where ϕ̄(X), t̄(X) and m̄τ (X) denote the prescribed boundary fields.

3.5 Membranes

For pure membranes, Mαβ = 0, such that Nαβ = σαβ, Sα = 0 and t = T . The stress and
traction state is then characterized by

σ = σαβ aα ⊗ aβ (78)

and
T α = σαβ aβ . (79)

Equilibrium is still given by (61). Also (63) and (64) still apply but can be simplified (Sauer
et al., 2014).

4 Shell constitution

This section discusses the constitutive framework of hyperelastic shells. Based on the mechanical
power balance and the dissipation inequality, we can derive the stored energy function governing
shells. Its linearization and stability are then discussed.

4.1 Mechanical power balance

The mechanical power balance follows from equilibrium. Contracting with the velocity v and
integrating over P ⊂ S, we find∫

P
v ·
(
T α;α + f − ρ v̇

)
da = 0 ∀P ⊂ S . (80)
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In here, the last term corresponds to the change of the kinetic energy

K :=
1

2

∫
P
ρv · v da , (81)

which, due to mass balance, is given by

K̇ :=

∫
P
ρv · v̇ da . (82)

Using Stokes theorem, the first part can be rewritten into∫
P
v · T α;α da =

∫
∂P
v · T α να ds−

∫
P
ȧα · T α da , (83)

where T α να = T . Using Eqs. (49), (72), (7) and the property that σαβ is symmetric, the last
term becomes

ȧα · T α = 1
2σ

αβ ȧαβ −Mαβ n,α · ȧβ −Mβα
;βȧα · n . (84)

Here, the last term now gives

Mβα
;β ȧα · n =

(
ṅ ·Mα

)
;α

+Mαβ ṅ,α · aβ , (85)

since ṅ · aβ;α = 0 due to (6) and (28). Inserting (85) and (84) into (83) and applying Stokes
theorem and (27), we thus find∫

P
ȧα · T α da =

1

2

∫
P
σαβ ȧαβ da+

∫
P
Mαβ ḃαβ da−

∫
∂P
ṅ ·M ds , (86)

so that the mechanical power balance can be expressed as

K̇ + Pint = Pext ∀P ⊂ S , (87)

where

Pint =
1

2

∫
P
σαβ ȧαβ da+

∫
P
Mαβ ḃαβ da (88)

is the interal stress power of P and

Pext =

∫
P
v · f da+

∫
∂P
v · T ds+

∫
∂P
ṅ ·M ds (89)

is the power of the external forces acting on P and ∂P.
The weak form of Eq. (61) can be derived analogously, see Sec. 6.

4.2 Dissipation inequality

The internal stress power (88) can be rewritten into

Pint =
1

2

∫
P0

ταβ ȧαβ dA+

∫
P0

Mαβ
0 ḃαβ dA , (90)

where we have defined
ταβ := Jσαβ ,

Mαβ
0 := JMαβ .

(91)

The local power density ταβ ȧαβ/2 +Mαβ
0 ḃαβ appears in the mechanical dissipation inequality

1

2
ταβ ȧαβ +Mαβ

0 ḃαβ − Ψ̇ ≥ 0 , (92)

where Ψ is the Helmholtz free energy (per reference area). (92) is a consequence of the second
law of thermodynamics for isothermal systems.
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4.3 Constrained hyperelasticity

Let us now consider a conservative system at fixed temperature (such that Ψ̇ = Ẇ ) undergoing
a cyclic process. The mechanical dissipation in every cycle must be zero, i.e.

1

2
ταβ ȧαβ +Mαβ

0 ḃαβ − Ẇ = 0 (93)

for all processes. The system may be constrained, such that the stored energy density of the
shell S can be expressed as

W = Wx +Wg , (94)

where
Wx = Wx(aαβ, bαβ) (95)

denotes the contribution from deformation, and

Wg = q g(aαβ, bαβ) (96)

denotes the contribution associated with a constraint g = 0; q is then the Lagrange multiplier
associated with the constraint. Applying the chain rule then yields

Ẇ =
∂W

∂aαβ
ȧαβ +

∂W

∂bαβ
ḃαβ + g q̇ , (97)

so that (93) yields (
1

2
ταβ − ∂W

∂aαβ

)
ȧαβ +

(
Mαβ

0 − ∂W

∂bαβ

)
ḃαβ − g q̇ = 0 . (98)

Since this applies to all processes, the usual argumentation (Coleman and Noll, 1964) leads to
the constitutive equations

ταβ = 2
∂W

∂aαβ
= 2

∂Wx

∂aαβ
+ 2q

∂g

∂aαβ
,

Mαβ
0 =

∂W

∂bαβ
=

∂Wx

∂bαβ
+ q

∂g

∂bαβ
,

(99)

and g = 0.
For the later developments we require the variation of W . Similar to (97), this can be written
as

δW = δxW + g δq , (100)

with

δxW :=
∂W

∂aαβ
δaαβ +

∂W

∂bαβ
δbαβ . (101)

Due to (99) we then have

δxW = 1
2 τ

αβ δaαβ +Mαβ
0 δbαβ . (102)

If no constraint is present q and δq are considered zero.
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4.4 Linearization of W

Linearizing (100), we obtain

∆δW = ∆xδxW + δg∆q + δq∆g , (103)

with

δg =
∂g

∂aαβ
δaαβ +

∂g

∂bαβ
δbαβ , ∆g =

∂g

∂aαβ
∆aαβ +

∂g

∂bαβ
∆bαβ , (104)

and

∆xδxW = δaαβ
∂2W

∂aαβ ∂aγδ
∆aγδ + δaαβ

∂2W

∂aαβ ∂bγδ
∆bγδ +

∂W

∂aαβ
∆δaαβ

+ δbαβ
∂2W

∂bαβ ∂aγδ
∆aγδ + δbαβ

∂2W

∂bαβ ∂bγδ
∆bγδ +

∂W

∂bαβ
∆δbαβ .

(105)

Let us introduce

cαβγδ := 4
∂2W

∂aαβ ∂aγδ
= 2

∂ταβ

∂aγδ
,

dαβγδ := 2
∂2W

∂aαβ ∂bγδ
=

∂ταβ

∂bγδ
,

eαβγδ := 2
∂2W

∂bαβ ∂aγδ
= 2

∂Mαβ
0

∂aγδ
,

fαβγδ :=
∂2W

∂bαβ ∂bγδ
=

∂Mαβ
0

∂bγδ
,

(106)

such that

∆xδxW = cαβγδ 1
2δaαβ

1
2∆aγδ + dαβγδ 1

2δaαβ ∆bγδ + ταβ 1
2∆δaαβ

+ eαβγδ δbαβ
1
2∆aγδ + fαβγδ δbαβ ∆bγδ + Mαβ

0 ∆δbαβ .
(107)

We note that cαβγδ and fαβγδ posses both minor and major symmetries; dαβγδ and eαβγδ posses
only minor symmetries, but additionally we have

dαβγδ = eγδαβ . (108)

Due to the symmetries of c, d and e, and due to Eqs. (25) and (29) we find

cαβγδ 1
2δaαβ

1
2∆aγδ = δaα · aβ cαβγδ aγ ·∆aδ ,

dαβγδ 1
2δaαβ ∆bγδ = δaα · aβ dαβγδ n ·

(
∆aγ,δ − Γεγδ ∆aε

)
,

eαβγδ δbαβ
1
2∆aγδ =

(
δaα,β − Γεαβ δaε

)
· n eαβγδ aγ ·∆aδ ,

fαβγδ δbαβ ∆bγδ =
(
δaα,β − Γεαβ δaε

)
· n fαβγδ n ·

(
∆aγ,δ − Γζγδ ∆aζ

)
.

(109)

We further have
∆δaαβ = δaα ·∆aβ + δaβ ·∆aα ,

∆δbαβ = δaα,β ·∆n+ δn ·∆aα,β + aα,β ·∆δn .
(110)

Due to (28) and (30) we find

aα,β ·∆δn = δaγ ·
(
Γγαβ a

δ ⊗ n+ Γδαβ n⊗ aγ − aγδ bαβ n⊗ n
)

∆aδ , (111)

which is symmetric w.r.t. variation and linearization. Inserting (111) into (110) and using (28),
then gives

∆δbαβ = − δaγ · (n⊗ aγ) ∆aα,β − δaα,β · (aγ ⊗ n) ∆aγ

+ δaγ ·
(
Γγαβ a

δ ⊗ n+ Γδαβ n⊗ aγ − aγδ bαβ n⊗ n
)

∆aδ .
(112)
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4.5 Stability considerations

In order to assess the stability of the hyperelastic material models introduced above, we inves-
tigate the following stability condition: The material model is stable if there exists an ε > 0
such that

gαβ ĉ
αβγδ gγδ ≥ ε ‖g‖2 (113)

for any symmetric tensor g = gαβ a
α ⊗ aβ, see Marsden and Hughes (1994), p. 258. We

will investigate this criteria for the membrane part (ĉαβγδ = cαβγδ) and the bending part
(ĉαβγδ = fαβγδ) considering the examples in Sec. 5. In turns out that for those, the tangent
components can all be written in the format

ĉαβγδ = ĉaa a
αβ aγδ + ĉa a

αβγδ + ĉab a
αβ bγδ + ĉba b

αβ aγδ + ĉbb b
αβ bγδ , ĉ = c, d, e, f (114)

for suitable definitions of coefficients ĉaa, ĉa, ĉab, ĉba and ĉbb. If g is symmetric then its eigen-
values, following from det[gαβ − λ δαβ ] = 0, must be real, which implies that g12 g

2
1 ≥ 0. For the

special case ĉab = ĉba = ĉbb = 0, we then find

gαβ ĉ
αβγδ gγδ = ĉaa (gαα)2 − ĉa gαβ g

β
α , (115)

which further yields

gαβ ĉ
αβγδ gγδ =

(
ĉaa − ĉa/2

)
(gαα)2 − ĉa

(
1
2(g11 − g22)2 + 2 g12 g

2
1

)
. (116)

Condition (113) is thus satisfied if both

2ĉaa − ĉa > 0 & ĉa < 0 . (117)

Note, that criterion (113) is addressing material stability and does not say anything about
structural instabilities, like buckling and wrinkling.

5 Stored energy functions for membranes and shells

This section presents several examples for hyperelastic shell models considering both solids and
liquids. Specific models for area-incompressible shells are also considered. Eqs. (32), (34), (39),
(42), (46), (91), (99) and (106) are then used to determine the stress and tangent components.
From this the stability is then assessed. The first two sections examine pure membranes, for
which W is only a function of aαβ. The remaining two section deal with the bending part.

5.1 Membrane energy: solids

We begin by examining solid membranes. Two-cases are considered: Unconstrained membranes
and area-constrained membranes.

5.1.1 Unconstrained solid membranes

A general model for unconstrained membranes is given by the stored surface energy density
(per reference surface)

W =
Λ

4
(J2 − 1− 2 lnJ) +

µ

2
(I1 − 2− 2 lnJ) . (118)
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This expression is very similar to the 3D Neo-Hookean model (Wriggers, 2008). By design, we
have W = 0 if J = 1 and aαβ = Aαβ. From (118) we find

σαβ =
1

J

[Λ

2

(
J2 − 1

)
aαβ + µ

(
Aαβ − aαβ

)]
, (119)

while Mαβ = 0. We further find

cαβγδ = Λ J2 aαβ aγδ +
(
Λ (J2 − 1)− 2µ

)
aαβγδ , (120)

while dαβγδ = eαβγδ = fαβγδ = 0. According to format (114),

caa = Λ J2 ,

ca = Λ (J2 − 1)− 2µ ,
(121)

while all other ĉ vanish. According to (117) this model is stable if parameters Λ and µ satisfy

K := Λ + µ > 0 & µ > K
J2 − 1

J2 + 1
. (122)

If J > 1, this is satisfied even for Λ = 0, which is the case considered in Sauer et al. (2014).
The parameters K and µ are the in-plane bulk and shear moduli of the membrane.

Remark: The bulk and shear contributions can be separated if we consider the formulation

W =
K

4
(J2 − 1− 2 lnJ) +

µ

2
(Î1 − 2) , (123)

where Î1 = I1/J . Here the first term captures purely dilatoric deformation, while the second
part captures purely deviatoric deformation. The formulation is analogous to the 3D case
described for example in Wriggers (2008). It is considered further in Sauer et al. (2016).

5.1.2 Area-constrained solid membranes

Area-incompressible membranes observe the constraint

g = 1− J = 0 . (124)

This is included in the energy density function via the Lagrange multiplier method. Considering
the formulation from Sec. 5.1.1 (with J = 1), we thus have

W =
µ

2
(I1 − 2) + q g , (125)

such that
ταβ = µAαβ − qJ aαβ , (126)

and
cαβγδ = −qJ aαβaγδ − 2qJ aαβγδ . (127)

Criteria (117) are thus satisfied if q > 0, which is the case for the example in Sec. 7.2. Since
J = 1, the Cauchy stress is now given by

σαβ = µAαβ − q aαβ . (128)

15



5.2 Membrane energy: liquids

Next we examine liquid membranes under hydrostatic conditions, where no shear resistance is
present. Three different models are considered.

5.2.1 Constant surface tension

The first model considers constant surface tension within the membrane, as it is often assumed
for liquids. In that case the surface energy (per current area) is also constant and equal to the
surface tension. Denoting the surface tension by γ > 0, the surface energy per reference area
becomes

W = γJ , (129)

and it follows that
σαβ = γ aαβ (130)

and
cαβγδ = γ J

(
aαβ aγδ + 2aαβγδ

)
. (131)

According to format (114), we now have

caa = γ J ,

ca = 2γ J ,
(132)

while all other ĉ vanish. This does not satisfy stability conditions (117). Liquid membranes
therefore need to be stabilized in quasi-static computations, e.g. by the scheme proposed in
Sauer (2014).
According to model (129), the surface area can increase without restriction during deformation.
This is plausible for liquid membranes that bound liquids, since in that case the membrane
can recruit surface molecules from the bulk during stretching. Likewise free films may be able
to recruit further molecules through the boundary. If the liquid membrane is a free film, that
cannot recruit molecules from the bulk or the boundary, it is more realistic to consider one of
the following two models.

5.2.2 Area-compressible liquid membranes

If the liquid membrane is compressible, it can be modeled by Eq. (123) with µ = 0. If the
compressibility is only small the alternative

W =
K

2
g2 (133)

can be considered. Also here, K > 0 is the bulk modulus. It follows that

σαβ = K (J − 1) aαβ (134)

and
cαβγδ = KJ (2J − 1) aαβaγδ + 2KJ (J − 1) aαβγδ . (135)

This does not satisfy criteria (117) for J ≤ 1. Essentially shear stiffness is missing.
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5.2.3 Area-incompressible liquid membranes

Area-incompressible membranes are governed by

W = q g , (136)

where g is given by (124). It follows that

σαβ = −q aαβ . (137)

The material tangent is identical to the one for area-incompressible solids in Eq. (127) above.
Stability again requires q > 0. For liquids the stress at the boundary is usually tensile (e.g. equal
to the surface tension γ > 0), such that q = −γ < 0. Model (136) is therefore also unstable.

5.3 Bending energy: liquids and solids

We now examine bending energies that have been proposed for liquid shells, but are in principle
also applicable to solid shells. By liquid shells we understand shells that behave fluid-like in
plane and solid-like out of plane. So the distinction really lies in the membrane part (discussed
above) rather than the bending part. However, there are bending models that are unsuitable
for liquids shells, as they also affect the in-plane response. Those are then discussed in Sec. 5.4.
Here we discuss classical models developed for unconstrained liquid shells and area-constrained
liquid shells.

5.3.1 Unconstrained shells

A popular bending model used to study liquid shells is the bending energy of Helfrich (1973)

w := k (H −H0)
2 + k̄ κ (138)

per current surface area. Here, H0 denotes the so-called spontaneous curvature which is impor-
tant to model for example the effect of proteins on lipid bilayers; k and k̄ are material constants.
Per reference area we then have

W = J
(
k (H −H0)

2 + k̄ κ
)
. (139)

Defining ∆H := H −H0, we now find

ταβ = J
(
k∆H2 − k̄ κ

)
aαβ − 2k J ∆H bαβ , (140)

Mαβ
0 = J

(
k∆H + 2k̄ H

)
aαβ − k̄ J bαβ , (141)

and further, using (45),

cαβγδ = caa a
αβ aγδ + ca a

αβγδ + cbb b
αβ bγδ + cab

(
aαβ bγδ + bαβ aγδ

)
,

dαβγδ = daa a
αβ aγδ + da a

αβγδ + dab a
αβ bγδ + dba b

αβ aγδ = eγδαβ ,

fαβγδ = faa a
αβ aγδ + fa a

αβγδ ,

(142)
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with
caa = J

(
k∆H (∆H − 8H) + k̄ κ

)
,

ca = 2J
(
k∆H (∆H − 4H)− k̄ κ

)
,

cbb = 2k J ,

cab = cba = 2k J ∆H ,

daa = J
(
k∆H − 2k̄ H

)
,

da = 2J k∆H ,

dab = J k̄ ,

dba = −J k ,
faa = J (k/2 + k̄) ,

fa = J k̄ .

(143)

As can be seen, this bending model generates membrane stresses. As was mentioned earlier for
thin shells (see Sec. 3.3), those stresses are higher order contributions compared to the stresses
originating from the membrane energies in Sec. 5.2. We will therefore assess the stability of
the Helfrich model by only examining the bending response characterized by the tangent fαβγδ.
According to (117), it is easy to see that the Helfrich model is only stable if

−k < k̄ < 0 . (144)

A special case of the Helfrich model is the bending model of Canham and Rand, initially
proposed for red blood cells (Canham, 1970). It can be expressed as

W = J w , w :=
c

2

(
κ21 + κ22

)
. (145)

Alternatively, w can also be written as w = c bαβ b
β
α/2 or w = c (2H2−κ), so that it follows from

the Helfrich model with k = 2c, k̄ = −c and H0 = 0. Since this satisfies (144), the model is
stable in bending. In particular we get for the Caham model,

σαβ = c (2H2 + κ) aαβ − 4cH bαβ (146)

and
Mαβ = c bαβ . (147)

If we ignore high order dependencies on the deformation, we arrive at the classical plate equa-
tions σαβ = 0 and Mαβ = c bαβ.

5.3.2 Area-constrained shells

The Helfrich model can be adapted to area-incompressible shells. We then have

W = k∆H2 + k̄ κ . (148)

which can then be combined with Eq. (136). From (148) follows

ταβ = −2k∆H bαβ − 2k̄ κ aαβ = σαβ ,

Mαβ
0 =

(
k∆H + 2k̄ H

)
aαβ − k̄ bαβ = Mαβ ,

(149)
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from which we now find the tangent coefficients

caa = −8kH ∆H + 4k̄ κ ,

ca = −8kH ∆H − 4k̄ κ ,

cbb = 2k ,

cab = cba = 4k∆H ,

daa = −4k̄ H,

da = 2k∆H ,

dab = 2 k̄ ,

dba = −k ,
faa =

(
k/2 + k̄

)
,

fa = k̄ .

(150)

Bending stability again follows if condition (144) is met.

For the Canham special case we now have

σαβ = 2c (κaαβ − 2H bαβ) (151)

and
Mαβ = c bαβ . (152)

5.4 Bending energy: solids

We finally examine some classical bending models that have been developed for solid shells. The
following two models are examined: the Koiter model and the classical 3D modeling approach.

5.4.1 Linear elastic shells: The Koiter model

A very simple shell model is given by the model of Koiter, e.g. see Ciarlet (2005). It can be
expressed as

W =
1

8

(
aαβ −Aαβ

)
cαβγδ

(
aγδ −Aγδ

)
+

1

2

(
bαβ −Bαβ

)
fαβγδ

(
bγδ −Bγδ

)
(153)

where Bαβ denotes the curvature in the initial configuration, and where

cαβγδ = ΛAαβ Aγδ + µ
(
Aαγ Aβδ +Aαδ Aβγ

)
,

fαβγδ =
T 2

12
cαβγδ ,

(154)

are now constants. Here T is the initial shell thickness. It follows that

ταβ = cαβγδ
(
aγδ −Aγδ

)
/2 ,

Mαβ
0 = fαβγδ

(
bγδ −Bγδ

)
.

(155)

From Eq. (106) further follows that dαβγδ = eαβγδ = 0. The Koiter shell model is analogous
to the St. Venant-Kirchhoff model in classical continuum mechanics. It yields linear material
relations for ταβ(aγδ) and Mαβ

0 (bγδ), while geometrical nonlinearities are still captured. If
desired, the membrane part within (153) can be easily replaced by one of the nonlinear models
of Sec. 5.1.
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5.4.2 Bending models derived from 3D constitutive models

Computational shell models are often based on classical three-dimensional constitutive models
of the form W̃ = W̃ (C̃), where C̃ is the Cauchy-Green tensor for 3D continua. Considering the
special kinematics of shells, we can then write C̃ = C̃(aαβ, bαβ), such that W = W (aαβ, bαβ)
can be extracted. Specifically we have

C̃ = CαβG
α ⊗Gβ + Cα3

(
Gα ⊗N +N ⊗Gα

)
+ C33N ⊗N , (156)

where Gα = GαβGβ and [Gαβ] = [Gαβ]−1 with Gαβ = Gα · Gβ. {G1, G2, N} is the basis
used to describe the initial shell geometry, e.g. see Wriggers (2008). Gα acounts for the surface
stretch due to the initial shell curvature, i.e.

Gα =
(
δβα − ξ Bβ

α

)
Aβ , (157)

where ξ ∈ [−T/2, T/2] is the thickness coordinates of the shell. For the Kirchhoff-Love shell we
have

Cαβ = aαβ + 2ξ bαβ + ξ2 bγα bγβ , (158)

while Cα3 = 0 and C33 = 1. The surface energy of the shell then follows from the thickness
integration

W =

∫ T/2

−T/2
W̃ dξ . (159)

From this all the stress, moment and tangent components follow.
The advantages of this formulation is that any W̃ can be used, and that it is not restricted to
Kirchhoff-Love kinematics. On the downside, numerical quadrature has to be used generally in
order to evalute the thickness integration coming from (159). In the case of pure membranes,
the dependency on ξ is neglected, and the integration can be carried out analytically (Sauer,
2016).

6 Weak form

This section presents the weak form of the Kirchhoff-Love shell, and discusses its linearization
and decomposition into in-plane and out-of-plane contributions. Unconstrained and constrained
shells are considered.

6.1 Unconstrained system

The weak form of equilibrium equation (61) can be derived analogously to the mechanical power
balance in Sec. 4.1 by simply replacing the velocity v with the admissible variation δx ∈ V.
Immediatly we obtain

Gin +Gint −Gext = 0 ∀ δx ∈ V , (160)

with

Gin =

∫
S0
δx · ρ0 v̇ dA ,

Gint =

∫
S0
δxW dA =

∫
S0

1

2
δaαβ τ

αβ dA+

∫
S0
δbαβM

αβ
0 dA ,

Gext =

∫
S
δx · f da+

∫
∂S
δx · T ds+

∫
∂S
δn ·M ds ,

(161)
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according to Eqs. (87)–(90) and (82). Due to Eq. (102), Gint can also be obtained as the
variation of

Πint =

∫
S0
W dA (162)

w.r.t. x, i.e. Gint = δxΠint. Thus, if Gext is also derivable from a potential, the static weak form
Gint −Gext = 0 ∀ δx ∈ V is the result of the principle of stationary potential energy.

6.2 Constrained system

For the constrained problem, we need to include the constraint g = 0. The weak form of that
is simply

Gg =

∫
S0
δq g dA = 0 ∀ δq ∈ Q , (163)

where δq ∈ Q is a suitably chosen variation of the Langange multiplier q. The weak form
problem statement is then given by solving the two equations

Gin +Gint −Gext = 0 ∀ δx ∈ V ,
Gg = 0 ∀ δq ∈ Q ,

(164)

for x and q. Due to Eq. (100), we can find Gint + Gg = δΠint, such that the static version
of weak form (164), for suitable Gext, is still the result of the principle of stationary potential
energy.

6.3 On the application of boundary moments and tractions

Based on definition (76) from Sec. 3.4, we find

δx · T = δx · t+ δn ·mν τ + (δx ·mν n)′ , (165)

by using Eq. (28) and

δx′ =
∂δx

∂ξα
∂ξα

∂s
= δaα τ

α = δaα (aα · τ ) . (166)

With the help of Eq. (58), we thus obtain

δx · T + δn ·M = δx · t+ δn ·mτ ν + (δx ·mν n)′ , (167)

such that ∫
∂S

(
δx · T + δn ·M

)
ds =

∫
∂S

(
δx · t+ δn ·mτ ν

)
ds+ [δx ·mν n

]
, (168)

where the last term denotes the virtual work of the point loads mν n that are present at corners
on the boundary ∂S. At Dirichlet boundaries usually δx = 0. If, at Neumann boundaries,
mν = 0, i.e. only m = mττ is applied, the last term in Eq. (168) vanishes.
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6.4 Linearization

For the linearization of the weak form, let us consider the static case of (164), written in the
combined form

δΠint −Gext = 0 ∀ δx ∈ V & δq ∈ Q , (169)

where δΠint = Gint +Gg. Linearizing the internal virtual work gives, according to (103),

∆δΠint =

∫
S0

∆xδxW dA+

∫
S0
δg∆q dA+

∫
S0
δq∆g dA , (170)

where ∆xδxW is given by (105). In order to linearize Gext we consider dead loading for f , t
and M . The case of live pressure loading is given in Sauer et al. (2014). For dead M , we must
have

mτ ds = m0
τ dS = const. (171)

The linearization of Gext according to (161.3) and (168) thus only yields

∆Gext =

∫
∂S

∆δn ·mτ ν ds+

∫
∂S
δn ·mτ ∆ν ds . (172)

From (28) and (30) we find

∆δn = (δaα · n)(n ·∆aβ) aαβ n+ (δaα · n)(aα ·∆aβ)aβ + (δaα · aβ)(n ·∆aβ)aα , (173)

while in Sauer (2014), Appendix A.4, we have showed that for ν = τ × n we have

∆ν = −(τ ⊗ ν) ∆τ − (n⊗ ν) ∆n , (174)

where ∆τ = ∆x′ = ∂∆x/∂s. For dead loading, ∆τ = 0. Further, δn ·n = 0. The second term
in (172) thus vanishes and we are only left with

∆Gext =

∫
∂S
mτ δaα ·

(
νβ n⊗ aα + να aβ ⊗ n

)
∆aβ ds , (175)

which is symmetric w.r.t. variation and linearization, as it should be for dead loading.

6.5 Decomposition

The weak form can be decomposed into in-plane and out-of-plane contributions, which is dis-
cussed here. This may be interesting for liquids, when hydrostatic stabilization approaches are
developed based on the in-plane weak form (Sauer et al., 2014; Sauer, 2014).
We first consider the terms in Gint. Let δx = w = wα a

α + wn, such that δaα = w,α = w;α.
Since

wα;β = (w · aα);β = w;β · aα + w bαβ , (176)

we find
δaαβ = wα;β + wβ;α − 2w bαβ . (177)

For symmetric σαβ, we thus find the following decomposition,

1
2σ

αβ δaαβ = wα;β σ
αβ − w bαβ σαβ . (178)

Taking one and two derivatives of w and contracting with n gives

w;α · n = wβ b
β
α + w;α ,

w;αβ · n = wγ;α b
γ
β + wγ;β b

γ
α + wγ b

γ
α;β + w;αβ − w bαγ bγβ ,

(179)
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such that we can express δbαβ according to (29) as

δbαβ = (w;αβ − Γγαβ w;γ) · n . (180)

For symmetric Mαβ, we thus obtain the decomposition

Mαβ δbαβ =
[
2wγ;α b

γ
β + wγ

(
bγα;β − b

γ
δ Γδαβ

)]
Mαβ +

[
w;αβ − w;γ Γγαβ − w bαγ b

γ
β

]
Mαβ .

(181)
From bγα = aγδ bδα it can be shown that

bγα;β = aγδ bδα;β , (182)

since aγδ;β = 0. Further

bδα;β = n · aδ;αβ , (183)

since n;β · aδ;α = 0.
Next, let us consider the terms of Gin and Gext. Writing v̇ = a := aα aα+ann, f := fα aα+pn
and t := tα aα + tnn, we find

δx · v̇ = wα a
α + w an ,

δx · f = wα f
α + w p ,

δx · t = wα t
α + w tn .

(184)

From (28) and (179) we further find

δn ·mτ ν = −
(
w;α + bβαwβ

)
ναmτ . (185)

With the help of these equations and (168), the weak form of (160)–(161) can then be decom-
posed by alternatively setting w = 0 and wα = 0. We thus obtain the in-plane and out-of-plane
weak forms

Gini + Ginti + Gexti = 0 ∀wα ∈ Vα ,
Gino + Ginto + Gexto = 0 ∀w ∈ Vn ,

(186)

with

Gini =

∫
S
wα ρ a

α dA ,

Gino =

∫
S
w ρan dA ,

Ginti =

∫
S
wα;β σ

αβ da+

∫
S

[
2wγ;α b

γ
β + wγ

(
bγα;β − b

γ
δ Γδαβ

)]
Mαβ da ,

Ginto = −
∫
S
w bαβ σ

αβ da+

∫
S

[
w;αβ − w;γ Γγαβ − w bαγ b

γ
β

]
Mαβ da ,

Gexti =

∫
S
wα f

α da+

∫
∂S
wα t

α ds−
∫
∂S
wα b

αβ νβmτ ds ,

Gexto =

∫
S
w pda+

∫
∂S
w tn ds−

∫
∂S
w;α ν

αmτ ds+ [wmν ] .

(187)

7 Analytical solution for pure bending

To illustrate the shell models from above let us consider a simple example. We consider a
flat rectangular sheet with dimension S × L, parameterized by the coordinates ξ ∈ [0, S] and
η ∈ [0, L]. The sheet is deformed into a curved sheet with dimension s × ` by applying the
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Figure 2: Pure bending example: Deformation of a flat sheet into a curved sheet with constant
radius.

homogeneous curvature κ1 and the homogeneous stretches λ1 = s/S and λ2 = `/L as is shown
in Fig. 2. The deformed sheet thus forms a circular arc with radius r = 1/κ1. The parameters
S, L, κ1, λ1 and λ2 are considered given, unless specified otherwise. According to the figure,
the surface in its initial configuration can be described by

X(ξ, η) = ξ e1 + η e2 , (188)

while its current surface can be described by

x(ξ, η) = r sin θ e1 + λ2 η e2 + r (1− cos θ) e3 , (189)

with θ := κ1λ1ξ and r := 1/κ1. The rotation at the end thus is Θ = κ1λ1S. From these
relations we obtain the initial tangent vectors

A1 =
∂X

∂ξ
= e1 ,

A2 =
∂X

∂η
= e2 ,

(190)

the current tangent vectors

a1 =
∂x

∂ξ
= λ1

(
cos θ e1 + sin θ e3

)
,

a2 =
∂x

∂η
= λ2 e2 ,

(191)

and the current normal
n = − sin θ e1 + cos θ e3 . (192)

From these we find the kinematic quantities

[Aαβ] =

[
1 0
0 1

]
, [Aαβ] =

[
1 0
0 1

]
, (193)

[aαβ] =

[
λ21 0
0 λ22

]
, [aαβ] =

[
λ−21 0

0 λ−22

]
, J = λ1λ2 , (194)

and

[bαβ] =

[
κ1λ

2
1 0

0 0

]
, [bαβ ] =

[
κ1 0
0 0

]
, [bαβ] =

[
κ1λ

−2
1 0

0 0

]
, H =

κ1
2
, κ = 0 .

(195)
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7.1 Unconstrained solid shell

Let us first consider the unconstrained solid models of Sec. 5.1.1 and 5.3.1. Substituting the
above relations into Eq. (119) yields the membrane stress

[σαβ] =
Λ

2J

(
J2 − 1

) [ λ−21 0

0 λ−22

]
+
µ

J

[
1− λ−21 0

0 1− λ−22

]
, (196)

due to stretches λ1 and λ2. Evaluating (146) and (147) yields the stress and bending moment
due to κ1,

[σαβ] =
c

2
κ21

[
−3λ−21 0

0 λ−22

]
(197)

and

[Mαβ] = c κ1

[
λ−21 0

0 0

]
, (198)

such that

[bαγM
γβ] = c κ21

[
λ−21 0

0 0

]
. (199)

Now consider a cut at θ that is perpendicular to the normal

ν = a1/λ1 , (200)

such that
ν1 = a1 · ν = λ1 and ν2 = a2 · ν = 0 . (201)

The distributed bending moment acting on the cut is given by M = Mαβνανβ . For the present
example we therefore find the simple linear relation

M = c κ1 , (202)

between the prescribed curvature and the resulting bending moment.
Inserting (196)–(199) into (73) yields the in-plane stress components N12 = N21 = 0 and

N11 =
Λ

2J

(
J2 − 1

)
λ−21 +

µ

J

(
1− λ−21

)
− c

2
κ21λ

−2
1 ,

N22 =
Λ

2J

(
J2 − 1

)
λ−22 +

µ

J

(
1− λ−22

)
+
c

2
κ21λ

−2
2 ,

(203)

due to combined bending and stretching. Therefore we have N1
2 = N2

1 = 0 and

N1
1 =

Λ

2J

(
J2 − 1

)
+
µ

J

(
λ21 − 1

)
− c

2
κ21 ,

N2
2 =

Λ

2J

(
J2 − 1

)
+
µ

J

(
λ22 − 1

)
+
c

2
κ21 .

(204)

As can be seen from the last term, the bending affects the in-plane membrane stress state. This
influence may seem odd, but it is a high order effect since the bending stiffness c is usually
proportional to the shell thickness cubed, while Λ and µ are only proportional to the thickness
itself. The influence thus vanished for thinner and thinner shells.

To assess the solution further, the following two special cases are considered next:
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1. Dirichlet case: Bending is induced by prescribing a rotation on the two edges such that the
curvature is κ1. Further, all edges are fixed such that λ1 = λ2 = 1. The forces at the boundary
are thus M = c κ1 and

N1
1 = − c

2
κ21 ,

N2
2 = +

c

2
κ21 .

(205)

Since N1
1 6= 0 the surface pressure p = N1

1 /r is required to equilibrate the structure.

2. Neumann case: Now the bending moment M is prescribed and the boundaries are free to
move. The curvature now is κ1 = M/c, while the stretches can be determined from (204). Since
N1

1 = N2
2 = 0, we get

0 = Λ (J2 − 1) + 2µ (λ21 − 1)− c J κ21 ,

0 = Λ (J2 − 1) + 2µ (λ22 − 1) + c J κ21 .
(206)

Since J = λ1λ2, this is equivalent to

0 =
λ1
λ2
− λ2
λ1
− c

µ
κ21

0 = Λ (λ21λ
2
2 − 1) + µ (λ21 + λ22 − 2) .

(207)

Taking into account Eq. (202), Eq. (207) yields the physical solution

λ2 = λ1/a0 , a0 :=
M2

2µc
+

√(
M2

2µc

)2

+ 1 (208)

and

λ1 =

√
−µ̄ (a20 + 1) +

√
µ̄2(a20 + 1)2 + a20 (4 µ̄+ 1) , µ̄ :=

µ

2Λ
. (209)

7.2 Area-constrained solid shell

Next, we consider the area-constrained solid model considering the models in Secs. 5.1.2 and
5.3.2. Since now J = 1 we have λ2 = 1/λ1. According to (128) and (151), we now have the
stress

σαβ = µAαβ − q aαβ − 4cH bαβ , (210)

due to stretching and bending. According to (152), the bending moment for the area-constrained
case is the same as in Eqs. (198) and (199). From (73) then follows that the nonzero components
of Nα

β = Nαγaγβ are

N1
1 = µλ21 − q − c κ21 ,

N2
2 = µλ22 − q .

(211)

As before, we examine the following two special cases:

1. Dirichlet case: Prescribing the deformation such that λ1 = λ2 = 1, we have

N1
1 = µ− q − c κ2 ,

N2
2 = µ− q .

(212)

Due to the area constraint only two opposing edges need to be fixed, while the other two
opposing edges can be kept free. Therefore we can either have N1

1 = 0, for which q = µ− c κ21
and N2

2 = c κ21, or we can have N2
2 = 0, for which q = µ and N1

1 = −c κ21. If all edges are fixed,
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q remains unspecified. In order to equilibrate the structure, the surface pressure p = N1
1 /R is

required.

2. Neumann case: Keeping all edges free yields N1
1 = N2

2 = 0, such that q = µλ22 = µλ−21

according to (211b). Eq. (211a) then gives

λ41 −
c

µ
κ21λ

2
1 − 1 = 0 , (213)

which has the positive real solution λ1 =
√
a0, where a0 is from Eq. (208) above.

7.3 Unconstrained liquid shell

Let us now consider the unconstrained liquid shell model according to Secs. 5.2.1, 5.2.2 and
5.3.1. According to (130), (134), (140) and (141), the stress and moment components now are

σαβ =
(
k∆H2 − k̄κ+ γ

)
aαβ − 2k∆H bαβ ,

Mαβ =
(
k∆H + 2k̄H

)
aαβ − k̄ bαβ ,

(214)

where either γ is a given constant according to model (129) or γ = K(J−1) according to model
(133). In the present case, κ = 0 and ∆H = H = κ1/2, such that we find

Nα
β = (kH2 + γ) δαβ − kH bαβ , (215)

which has the non-zero components

N1
1 = γ − k

4
κ21 ,

N2
2 = γ +

k

4
κ21 .

(216)

From (201) we further find
M = kH . (217)

For given κ1, the following four cases can now be identified:

1. All sides are fixed, i.e. λ1 and λ2 are given. N1
1 and N2

2 then follow from (216). In case
of model (133), γ = K(λ1λ2 − 1).

2. N1
1 and λ2 are given: γ and N2

2 then follow from (216). Since γ cannot be an independent
constant, only model (133) is in general permissible, yielding λ1 = (1 + γ/K)/λ2.

3. N2
2 and λ1 are given: Similar to case 2, γ and N1

1 follow from (216) and λ2 = (1+γ/K)/λ1.

4. N1
1 and N2

2 are given. According to (216), this is generally not possible.

7.4 Area-constrained liquid shell

We finally consider the area-constrained liquid shell model according to Secs. 5.2.3 and 5.3.2.
According to (137) and (149), the stress and moment components now are

σαβ = −
(
2k̄κ+ q

)
aαβ − 2k∆H bαβ ,

Mαβ =
(
k∆H + 2k̄H

)
aαβ − k̄ bαβ .

(218)
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With κ = 0 and ∆H = H = κ1/2 we find

Nα
β = −q δαβ − kH bαβ , (219)

which has the non-zero components

N1
1 = −q − k

2
κ21 ,

N2
2 = −q .

(220)

From (201) we again find
M = kH . (221)

Further, due to the free edges at Y = 0 and Y = L we require that the bending moment M22

vanishes. This is the case for k̄ = −k/2.

For given κ1, the following four BC cases can now be identified:

1. λ1 and λ2 are given (such that λ1λ2 = 1). N1
1 and N2

2 then follow from (220); q remains
unspecified.

2. N1
1 and λ2 are given. q and N2

2 then follow from (216), while λ1 = 1/λ2.

3. N2
2 and λ1 are given. Similar to case 2, q and N1

1 follow from (216) while λ2 = 1/λ1.

4. N1
1 and N2

2 are given. According to (220), this is generally not possible.

8 Conclusion

This paper presents the governing equations of thin, quasi-static shells with either solid- or
liquid-like constitutive behavior. Using Kirchhoff-Love assumptions, the shell kinematics during
deformation is fully characterized by the change of the midplane tangent vectors a1 and a2,
which is captured by the quantities aαβ and bαβ. Starting from the balance laws for linear and
angular momentum, the governing shell equations are then derived in strong form. Those are
then complemented with general boundary conditions and general constitutive equations for
hyperelastic materials. Various example models are provided for those, considering both solid
and liquid shells and considering both unconstrained and area-constrained material behavior.
For those models the material stability of the membrane and bending parts is assessed, and
the weak form as well as its linearization is provided. As is shown, the weak form can be fully
decomposed into in-plane and out-of-plane contributions. As an application of the theory, the
paper finally presents the analytical solution for the homogenous bending and stretching of a
flat sheet considering four different material models.

The theory and its application example presented here provide a rigorous basis for the devel-
opment of numerical methods – for example in the framework of finite elements – that are
applicable to both solid- and fluid-like material behavior. This is currently being considered in
the framework of C1-continuous surface discretizations (Duong et al., 2016; Sauer et al., 2016).
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