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Abstract
A novel enrichment of finite elements for contact computations based on isogeometric analysis is
presented. Each body is divided into two parts, an enriched contact surface and the bulk domain
together with surfaces that are not in contact. The latter part comprises the large majority of
the domain and is treated in the usual manner with standard linear basis function, preserving
the efficiency of classical finite element techniques. The enriched contact surface is discretized
using NURBS basis functions of at least second order, allowing for a locally differentiable surface
representation. This avoids the problem of suddenly changing normal vectors between element
boundaries on the contact surface. Following the concept of isogeometric analysis, the smooth
basis functions are not only used to describe the surface geometry, but also to approximate the
solution on the surface. This leads to higher accuracy in the contact integral evaluation.
Numerical results are presented for 2D and 3D contact computations including frictionless
sliding, adhesive peeling, and cohesive debonding. The presented contact element enrichment
exhibits a major gain in numerical accuracy and stability without loss of efficiency compared to
standard linear finite elements. The enrichment technique offers some advantages over Hermite
and higher-order Lagrangian contact element enrichment techniques, such as locally differen-
tiable surface representations in 3D, while featuring competitive accuracy and performance.

Keywords: computational contact mechanics, isogeometric analysis, nonlinear finite element
methods, cohesive zone modeling, sliding, peeling

1 Introduction

This work presents a novel local finite element enrichment technique for contact computations
that is both accurate and efficient. Computational contact of deformable solids plays an impor-
tant role in engineering problems. Due to the complex nature of contact problems, numerical
methods are often the only feasible approach to solve them. Efficient and highly accurate meth-
ods are therefore needed in research and industry alike.
The presented formulation combines the high accuracy achieved with isogeometric analysis
with the efficiency of classical linear finite elements. The contact surface is locally enriched
with NURBS-based isogeometric surface elements, while the bulk is discretized with linear ele-
ments. By using the enrichment for both, geometry and analysis, this leads to an accurate and
continuous contact surface description and a higher accuracy in the contact integral evaluation.
An at least C1-continuous surface implies a continuous normal vector on the surface, making
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the projection of points to this surface simpler and more robust. The NURBS enrichment offers
a viable alternative to using highly refined meshes, as it provides highly accurate results on
comparably coarse meshes. It is shown that the use of NURBS enriched elements can even de-
crease the runtime of contact computations compared to standard linear elements due to faster
convergence of the solver.
Isogeometric analysis (IGA) was first introduced by [Hughes et al. (2005)] and is summarized
in [Cottrell et al. (2009)]. NURBS, the CAD modeling standard, are used as basis functions
for finite elements. Recent advances include the introduction of the Bézier extraction operator
[Borden et al. (2011)], allowing IGA to be embedded conveniently into existing finite element
codes by supplying a familiar element based representation. The extension to T-splines by
[Bazilevs et al. (2010)] offers the possibility of local mesh refinement.
A summary of non-linear computational contact mechanics is given in [Laursen (2002)] and
[Wriggers (2006)]. The use of IGA in contact computations has been investigated recently by
[De Lorenzis et al. (2011)], [Lu (2011)], [De Lorenzis et al. (2012)], and [Temizer et al. (2012))],
and includes 2D and 3D, frictional and frictionless problems solved with various methods to de-
scribe and enforce the contact conditions, like mortar methods and the augmented Lagrangian
method. In these papers the entire geometry is discretized with NURBS, as opposed to only
discretizing the contact surface as proposed in this work.
An approach used to obtain continuous normal vectors on a C0 facet-based contact surface
is geometrical contact smoothing. Various techniques exist to obtain a locally at least C1-
continuous surface. These techniques use Hermite ([Padmanabhan and Laursen (2001)]), Bézier
([Krstulovic-Opara et al. (2002)]), Spline ([El-Abbasi et al. (2001)]), or NURBS ([Stadler et al.
(2003)]) interpolation to approximate the contact surface. More recently, subdivision surfaces
have also been used as a smoothing technique in [Stadler and Holzapfel (2004)]. While these
formulations provide a continuous normal vector across element boundaries, the surface inte-
grals are still approximated linearly. Also, consistent linearization of the contact terms becomes
increasingly complex due to the influence of neighboring elements in the smoothing terms.
The presented formulation provides a smooth surface representation without applying further
smoothing techniques. The use of the NURBS basis functions to evaluate the surface integrals
provides a higher-order approximation of these terms. Consistent linearization of the surface
integrals then only depends on the two elements in contact.
Finite elements with one curved surface go back to [Zlámal (1973)], [Scott (1973)], and [Gordon
and Charles (1973)]. They rely on a mapping of linear elements to a curved boundary. More re-
cently the NURBS-Enhanced Finite Element Method (NEFEM) was proposed by [Sevilla et al.
(2008)]. It maps Lagrangian elements to a surface defined by NURBS and uses an adapted
integration rule to take into account the curved boundary. Besides the low-order integration
on the curved boundary, the NURBS surface is also considered rigid. Deforming the NURBS
surface during computation, essential for computational contact, requires fitting the NURBS
surface in each step. In the presented formulation, the displacement degrees of freedom are
solved directly on the NURBS control points. The deformation of the surface is thus obtained
automatically.
Previously proposed surface enrichments contain higher-order Lagrangian and Hermite inter-
polation, [Sauer (2011)] and [Sauer (2013)], which both yield good results in contact compu-
tations. Though Hermite interpolation on the surface also results in a C1-continuous surface
representation, it lacks an extension to 3D. Lagrangian enrichment is possible in 2D and 3D, but
C0-continuity across element boundaries remains. The NURBS-enrichment yields C1-continuity
and higher in 2D and 3D.

The following section gives a brief overview of the computational contact models used in this
paper and a summary of isogeometric analysis. Section 3 presents the NURBS-enriched contact
elements and related refinement strategies. Numerical examples are discussed in section 4. The
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results for NURBS-enriched contact elements are compared to those of standard linear finite
elements and Lagrangian and Hermite enriched contact elements. Section 5 concludes the paper.

2 Preliminaries

This section gives a very brief overview of the non-linear finite element method, computational
contact, and isogeometric analysis. The following theory is applicable in Rd with d = 2, 3, but
for simplicity isogeometric analysis is presented for NURBS curves only.

2.1 Computational contact in the framework of non-linear finite elements

Consider two bodies Bk (k = 1, 2) with surfaces ∂Bk. Parts of these surfaces, ∂cBk, can come
into contact with one another. The weak form for quasi-static contact describes the equilib-
rium between internal and external virtual work and the virtual contact work acting between
the bodies. In the examples to follow, the two-half-pass contact algorithm from [Sauer and
De Lorenzis (2013)] will be used to compute the contact tractions whenever two deformable
bodies are considered. It evaluates the contact traction tck on each surface ∂cBk separately. In
contrast, traditional one-pass algorithms evaluate the contact tractions tck on the slave surface
∂cBk and apply −tck to the master surface ∂cB`. This creates a bias in the formulation and
involves the integration of neighboring surface quantities, two drawbacks that are avoided by
the two-half-pass algorithm. Traditional one-pass algorithms do however satisfy the local bal-
ance of linear momentum in the discrete setting a priori. The two-half-pass contact algorithm
does not enforce local satisfaction of linear momentum in the discrete setting, but it is satisfied
exactly in the continuum setting. It follows, that the discrete approximation satisfies local linear
momentum to high accuracy and converges with mesh refinement.
Using the two-half-pass algorithm, the task is to find the mechanical deformation field ϕk ∈ Uk
satisfying the weak form

2∑
k=1

[ ∫
Bk

grad(δϕk) : σk dvk−
∫
∂cBk

δϕk · tck dak︸ ︷︷ ︸
virtual contact work

− δΠext,k

]
= 0 , ∀ δϕk ∈ Vk (1)

for the two-body system, where Uk is the space of kinematically admissible deformations. Within
equation (1), σk is the Cauchy stress tensor, tk is the contact traction on surface ∂cBk, δΠext,k

is the external virtual work, and Vk is the space of kinematically admissible variations.
The finite element approximation of the weak form (1) is obtained by discretization of the
volume to a set of elements Ωe

k with ne nodes such that Bk ≈ Bhk =
⋃

e Ωe
k, and a set of surface

elements Γe
k with nes nodes such that ∂Bk ≈ ∂Bhk =

⋃
e Γe

k. Approximated quantities are assigned
the index h. With the basis functions N1, . . . , Nne the displacement field uk within an element
Ωe
k is then interpolated as

uk ≈ uh
k = Nku

e
k (2)

with Nk =
[
N1 I , N2 I , ... , Nne I

]
, the identity tensor I in Rd, and the nodal displacements

of the element ue
k. Continuous quantities are printed in italics while discretized quantities are

printed roman. The virtual displacement field δϕk ≈ vhk , the deformation field xk ≈ xh
k , and

the reference configuration Xk ≈Xh
k are interpolated likewise.

With this interpolation, the discretized weak form can be written as

vT
[
fint + fc − fext

]
= 0 ∀ v ∈ Vh (3)
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with internal forces fint, contact forces fc, and external forces fext.

The contact contribution of an element Ωe
k can be computed as the integral over the element

surface in the reference configuration Γe
0k or in the current configuration Γe

k,

f eck = −
∫

Γe
0k

NT
k T ck dA = −

∫
Γe
k

NT
k tck da . (4)

In the examples to follow, the traction T ck or tck is given through the penalty method and
contact constitutive laws for adhesion and cohesion. In all cases, the traction depends on the
gap g, the surface normal at the projection point np, and parameters of the contact model.
The gap g = xk − xp is the distance between the point xk on surface ∂cBk and its projection
point xp on the neighboring body. The normal gap is defined as gn = (xk − xp) · np and is
positive if there is a gap between the bodies, and negative if the bodies are penetrating.
The penalty method

tck(xs) =

{
−εn gnnp , gn < 0
0 , gn ≥ 0

(5)

applies a traction in normal direction, which is proportional to the penetration depth. The
proportionality constant is the penalty parameter εn.
Van der Waals adhesion is described by

T ck(xs) = Tcnp , Tc(rs) =
AH

2πr3
0

[
1

45

(
r0

‖g‖

)9

− 1

3

(
r0

‖g‖

)3
]
, (6)

with the Hamaker’s constant AH and the atomic equilibrium spacing of the Lennard-Jones
potential r0. This formulation for adhesive contact is taken from [Sauer (2011)], where details
can be found.
The exponential cohesive zone model

T ck(xs) = −T0
‖g0‖
g0

exp

(
1− ‖g

0‖
g0

)
g0

‖g0‖
(7)

depends on the gap g0 and the parameters T0 and g0. In the reference configuration, the
projection point X0

p is computed for each surface point Xk. The gap g0 is the gap between the

current surface point xk and the current position x0
p of the original projection point X0

p. This
model is a special case of the cohesive zone model by [Xu and Needleman (1993)], as it is used
in [Sauer (2013)].

2.2 Isogeometric analysis

A brief review of isogeometric analysis with NURBS is given. For simplicity, only NURBS curves
are considered here, the extension to NURBS surfaces is straightforward due to their tensor-
product structure, see [Piegl and Tiller (1997)]. We will refer to piecewise linear, quadratic,
cubic etc. polynomials as curves of order p = 1, 2, 3, . . . . This convention was proposed by
[Hughes et al. (2005)] to maintain the usual terminology in finite element literature. In the
computational geometry community this is usually referred to as degree.
A NURBS curve is based on a B-spline curve, which is defined by its order, control points, and
knot vector. In general, a B-spline curve of order p is Cp−1 continuous, which makes the cases
p = 2 and p = 3 especially interesting for contact computations. The quadratic case offers
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continuous surface normals, the cubic case additionally a continuous curvature. The control
points are a set of n vector valued points

P = {PA}nA=1, with each PA ∈ Rd . (8)

The convex hull of the polygon spanned by P completely contains the B-spline curve. The knot
vector is a set of non-decreasing parametric coordinates

Ξ = {ξ1, ξ2, . . . , ξn+p+1} . (9)

Each unique knot value determines the position ξ at which the pieces of curves are connected.
The first and last knot value are repeated p + 1 times which makes the curve interpolatory
at its ends. Knot vectors with this property are referred to as open knot vectors. Repeated
interior knot values lead to a reduction of continuity at the repeated knot value. A knot with
multiplicity m reduces the continuity to Cp−m. With the order p and the knot vector Ξ, the
set of B-spline basis functions N̂p = {N̂A,p}nA=1 is defined as

N̂A,p(ξ) =
ξ − ξA

ξA+p − ξA
N̂A,p−1(ξ) +

ξA+p+1 − ξ
ξA+p+1 − ξA+1

N̂A+1,p−1(ξ) , for p > 0 (10)

with

N̂A,0(ξ) =

{
1 , if ξA ≤ ξ < ξA+1

0 , otherwise
. (11)

To go from a B-spline curve to a NURBS curve, the weights wB, assigned to each control point,
and the weighting function

W (ξ) =

n∑
B=1

wB N̂B,p(ξ) (12)

are needed. Together with the B-spline basis, the weights and the weighting function define n
rational basis functions

RA,p(ξ) =
wAN̂A,p(ξ)

W (ξ)
, A = 1 . . . n (13)

for NURBS curves. Introducing the diagonal matrix of weights W and dropping the index p,
equation (13) can be written in matrix form for the set of basis functions R(ξ) = {RA,p(ξ)}nA=1

R(ξ) =
WN̂(ξ)

W (ξ)
. (14)

A point S(ξ) on the NURBS curve is given by

S(ξ) =
n∑

A=1

PARA,p(ξ) = PT R(ξ) , ξ ∈ [ξ1, ξn+p+1] . (15)

To use the rational NURBS basis in finite element computations, it is convenient to make use
of the Bézier extraction operator introduced by [Borden et al. (2011)]. The localized Bézier
extraction operator Ce allows the numerical integration of the continuous rational basis func-
tions to be performed on C0 Bézier elements with a set of p + 1 Bernstein polynomials Be as
basis functions local to one element Γe. For all elements of order p the set Be is identical, the
information about the smoothness is shifted to the linear operator Ce that is in general different
for each element but needs to be computed only once. Written in matrix form, the rational
shape functions Re of an element can then be computed by

Re(ξ) =
WeCeBe(ξ)

W (ξ)
, ξ ∈ [−1, 1] (16)
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where the B-spline basis function evaluations are replaced by the evaluation of Bernstein poly-
nomials and a matrix product CeBe(ξ). This substitution is also used to evaluate the weighting
function W (ξ). The diagonal matrix We contains the weights associated to the control points
of the element. The Bézier extraction operator provides a familiar, element-based finite element
structure as opposed to the patch-level structure intrinsic to NURBS.
NURBS surface basis functions are defined by the tensor product of univariate 1D NURBS
basis functions. The Bézier extraction operator and the following refinement strategies can be
applied to NURBS surfaces in a straightforward manner.

2.2.1 Refinement strategies

Refinement of NURBS curves can be done in two different manners, by means of knot insertion
and order elevation. The first, knot insertion, is equivalent to classical h-refinement. Inserting a
new, unique knot value into the knot vector leads to an additional knot-span and consequently an
additional Bézier element. The geometry and parameterization of the curve remain unchanged
by knot insertion, as does the continuity for unique knot values. As stated above, repeating
knot values decreases the continuity.
Order elevation is analogue to classical p-refinement. The order of the basis can be elevated t
times from p to p + t, again without changing the geometry or parameterization of the curve.
Each unique knot value must be repeated t times in this procedure, which implies that the
continuity across existing element boundaries is not raised during order elevation.
The fact that knot insertion and order elevation do not commute is used in [Hughes et al. (2005)]
to introduce k-refinement. When applying k-refinement, the curve’s order is first elevated from
order p to order q = p + t, followed by knot insertion to the desired discretization. This order
creates new elements by knot insertion which are q − 1 continuous. If the order of refinements
were reversed and knot insertion performed first, the continuity of these new elements would be
p − 1 and remain that way during order elevation, as unique knot values are repeated during
this procedure.
In section 3.3, an alternative refinement strategy for the NURBS-enriched contact finite elements
is proposed.

3 Enriched contact finite elements

NURBS-enriched contact finite elements are introduced in this section, followed by the discus-
sion of the treatment of contact contributions and mesh refinement strategies for these elements.
Some remarks on numerical integration and the integration of the enrichment technique into
existing code are given. A brief review of Lagrangian and Hermite element enrichment, which
the NURBS enrichment is compared to in the numerical examples, concludes the section.

3.1 Finite element interpolation

For simplicity the theory is presented for the two-dimensional case, the extension to 3D is
discussed briefly at the end of this section. Here, the term node refers to both standard finite
element nodes and control points of the NURBS curve. Consider a body B with contact surface
∂cB. The discretized contact surface ∂cBh is given by a NURBS curve of order p. The bulk of
the body and surfaces other than the contact surface are discretized with standard linear finite
elements. Thus, the layer of elements on the contact surface have one face represented by the
NURBS curve and three linear faces. Such an element is defined by ne = p+ 3 nodes, p+ 1 on
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Figure 1: Schematic sketch of the 2D Q1Np master element Ω� and its current configuration
Ωe. Control points of the NURBS curve are depicted as circles, standard finite elements nodes
as squares.

the NURBS surface and 2 in the interior domain, see Figure 1. Without loss of generality, the
surface η = −1 of the master element Ω� is considered to be enriched. The basis functions of
such an element are

N1 = Re
1(ξ) 1

2(1− η)
...

Np+1 = Re
p+1(ξ) 1

2(1− η)

Np+2 = 1
4(1 + ξ)(1 + η)

Np+3 = 1
4(1− ξ)(1 + η)

(17)

with the rational basis functions Re
i defined in equation (16), using the Bézier extraction oper-

ator. They form a partition of unity

p+3∑
i=1

Ni(ξ, η) = 1 ∀ξ, η ∈ Ω� (18)

and are greater or equal to zero on the contact surface

Ni(ξ,−1) ≥ 0 ∀ξ ∈ Γ�, i = 1, . . . , p+ 1 . (19)

The NURBS-enriched element is denoted Q1Np, where p is the order of the NURBS curve.

The basis functions (17) are used for the geometry in the initial and current configuration and
for analysis to approximate the solution

ue ≈ ue =
∑ne

i=1Ni ui . (20)

This results not only in a continuous normal vector used in finding the closest point projection
on the contact surface, but also in higher-order integration of the contact traction.
Setting the order p = 1 and all weights to 1, the NURBS basis functions are equal to standard
linear basis functions. Thus, standard bi-linear Lagrange elements, denoted Q1C1, are contained
in this formulation as the special case Q1N1.
For a three dimensional body, the surface is enriched by a NURBS surface of order p and q.
One element then consists of ne = (p+ 1)(q+ 1) + 4 nodes, (p+ 1)(q+ 1) on the contact surface
and four in the bulk domain. The basis functions and approximations follow in an analogous
manner. In the three-dimensional example in 4.4 we set p = q and maintain the short notation
Q1Np.
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3.2 Contact contributions

For the computation of the contact contribution, only the contact surface ∂cB is necessary. The
discretized contact surface ∂cBh is the NURBS curve or surface, inherited directly from the
Q1Np elements. All contact computations rely on the projection of a surface point on one body
to another, or itself in the case of self-contact which is not considered here. The advantage
of a surface representation that is C1 continuous or higher, is the continuity of the normal
vector across element boundaries. Two deformable bodies moving tangentially to each other
with respect to their surfaces cause projection points of one surface to move across element
boundaries on the neighboring surface. Using C0 surface elements results in sudden changes of
the normal vector between elements, in which case an orthogonal projection point may not exist
and a projection to an element edge or corner must be considered. This drawback is avoided
with a smooth surface formulation. Figure 2 illustrates the projection of point xk to the contact
surface ∂cBh. The continuous surface representation on the left leads to a projection point xp at
which the direction of the surface normal np coincides with the direction of the normal gap gn.
On the right, the same surface is discretized using linear elements. No orthogonal projection in
direction of the surface normals n1 or n2 exists, the closest point projection xp is the element
corner at which a “normal vector” must be defined, for instance coinciding with the direction
along the gap gn or as average of n1 and n2. Multiple projection points may still exist with
Q1Np elements and at actual C0 edges or corners a projection to these geometric features is
still necessary.

The projection algorithm can take advantage of the continuous surface representation ∂cBh when
projecting a point xk onto it. Assuming the relative movement of the bodies is sufficiently small,
the local surface coordinates (ξ1

pn−1 , ξ
2
pn−1) of the projection point of the last iteration xn−1

p are
a good initial guess for the new projection point of xn

k , which is computed with a Newton
algorithm. If one or both of the local surface coordinates exceed the domain of the element
Ω� during the Newton iteration, the coordinates are converted to the local coordinate system
of the neighboring element. This leads to a good starting point on the new element under the
mild condition that the elements on ∂cBh are of similar size.
An additional advantage of the formulation is that algorithms developed for the NURBS-
enriched surface, like a contact algorithm, can be used directly for computations involving
only the surface like NURBS-based shell and membrane computations.

Figure 2: Projection of point xk to surface ∂cBh with a smooth surface (left) and a faceted
surface (right)
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3.3 Alternative refinement strategy

In section 2.2, h-, p-, and k-refinement are discussed. Here, an alternative surface-oriented
refinement strategy is introduced. In computational contact computations, k-refinement does
not lead to the best results, as section 4 discusses. The increased continuity is directly linked
to an increase of the basis function support. Very smooth basis functions are not capable of
accurately capturing the contact line, since the sharp transition from contact to no contact is
smoothed. Also, as illustrated in the left column of Figure 3, control points agglomerate along
the patch edges and points (1D) or lines (2D) of reduced continuity. The half sphere in Figure 3
has a C1 continuous point at its lowest point throughout all meshes due to the starting mesh of
order p = 2 consisting of two Bézier elements. Between the control point agglomerations, the
control points are sparsely spaced with one element length Le between them, regardless of the
order p. In general, only part of the contact surface ∂cBh is in contact, leading to few degrees
of freedom in the actual contact zone.

k-refined meshes

Q1N2

Q1N3

Q1N4

Q1N2.1

Q1N3.1 Q1N2.2

@
@
@
@
@
@R

additional p-refinement

@
@

@
@
@
@R

additional p-refinement

Figure 3: Different refinement strategies for NURBS-based surface enrichment. One NURBS-
enriched element is highlighted with its nodes on each mesh. The NURBS control points are
depicted as circles, standard finite element nodes as squares.

An alternative refinement strategy is proposed here, following the k-refinement with additional
p-refinement. The order elevation during k-refinement should thereby only be performed to
the necessary continuity. For contact computations, quadratic or cubic basis functions are
considered sufficient. Then, the desired element size and number is obtained with knot insertion.
This k-refinement leads to a mesh like in the left column of Figure 3, where one NURBS-enriched
element has been highlighted with its nodes on each mesh to visualize the differences between
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Elements surface continuity # DOF nes node span in Le nex nmax

Q1N2 C1 10 3 2 0 3
Q1N3 C2 12 4 3 0 4
Q1N4 C3 14 5 4 0 5

Q1N2.1 C1 12 4 1.6̄ 0 2
Q1N2.2 C1 14 5 1.5 1 2
Q1N2.3 C1 16 6 1.4 2 2
Q1N3.1 C2 14 5 2 0 3
Q1N3.2 C2 16 6 1.8 0 2
Q1N3.3 C2 18 7 1.6̄ 1 2

Table 1: Surface continuity, number of degrees of freedom per element, number of surface
nodes per element nes , node span, number of basis functions exclusive to one element nex, and
maximum basis support nmax for different elements in 2D.

the refinement strategies. Following the k-refinement, t additional steps of p-refinement by
means of order elevation are carried out. The order of each element is thus increased to p+ t,
the continuity remains Cp−1. To distinguish these elements from the k-refined elements Q1Np,
the notation is extended. The number t of additional steps of p-refinement is appended to
the element notation of the k-refined element it is based on, Q1Np.t. An element that is k-
refined to the order 2, followed by one step of additional p-refinement, is thus denoted Q1N2.1.
Elements that are only k-refined are also denoted Q1Np.0, but the trailing 0 is dropped for a
shorter notation. In Figure 3, elements in one row are of the same order, but the continuity
decreases from left to right. The increase of control points on the contact surface and their
even distribution over the entire surface compared to k-refinement is advantageous for contact
computations.
Some criteria to compare the different Q1Np.t elements besides the continuity across element
boundaries are presented in Table 1. The number of surface nodes per element is nes = p+ t+ 1
for 2D elements. It is independent of the refinement type and only depends on the order of
the basis. The node span is defined as the distance between the outermost control points of
an element, measured in the element length Le for a regular mesh. A large node span implies
larger smoothing effects, as changes in distant control points influence the element. One can
show that for t → ∞, the node span → 1 ∀ p. Another property to look at is the number
of basis functions whose support lies entirely within one element nex. These basis functions
only influence the one element and consequently allow for very local changes. The last property
considered is the maximum basis function support nmax in terms of elements. It measures the
maximum number of elements that are influenced by one basis function and is an indicator for
the amount of smoothing introduced by these elements.

3.4 Numerical integration

The evaluation of the weak form relies on numerical integration, which must be considered
adequately for the enriched elements. As with standard finite elements, the integration is
performed on a master element with the parametrization ranging from −1 to 1 in each direction.
One can distinguish between the volume integrals related to the internal virtual work and the
surface integrals related to the virtual contact work. For the latter case, considering a NURBS
surface of order p and q in ξ and η direction, respectively, one simply uses (p+ 1)(q+ 1) Gauss-
Legendre quadrature points in the usual tensor product fashion.
To ensure the stiffness matrix is of full rank in the volume integral, the number of quadrature
points needs to be increased with increasing number of control points on the surface. The
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simplest way to do this is to use the number of quadrature points required for the highest
NURBS order in the tensor product structure, resulting in (max(p, q) + 1)3 quadrature points
in R3. To reduce the computational cost, it is advantageous to define the Gauss-Legendre
quadrature points in a tensor product fashion, but with varying number of quadrature points
in each direction. Using (p+ 1) and (q + 1) quadrature points in the directions of the NURBS
surface and 2 quadrature points in the direction of the linear basis functions, the total number
of quadrature points can be reduced to 2(p+ 1)(q + 1) quadrature points per enriched element
in R3.
It is most likely possible to derive specialized integration rules for certain enriched elements
which achieve the same accuracy with fewer quadrature points, but this is not considered in the
scope of this paper.

3.5 Integration into existing code

The integration of the NURBS-enriched elements into an existing finite element analysis code
is straightforward and possible with only minor changes. However, some requirements must be
fulfilled: The number of nodes per element must be flexible to allow for NURBS of arbitrary
order on the surface. This also means that entries in the element connectivity matrix can
have different lengths. By using the Bézier extraction operator, the shape function evaluation
is identical for each NURBS-enriched element and only requires the evaluation of Bernstein
polynomials at the quadrature points. However, in general the localized Bézier extraction
operator Ce must be stored for each element, as shown in equation (16). With the exception
of the shape function evaluation, everything remains the same as in the standard case on the
quadrature point level, as long as the varying number of shape functions is taken into account.
Also, as stated in the previous section on numerical integration, the definition of quadrature
rules with varying number of quadrature points in each direction is helpful to increase efficiency.
The assembly procedure also remains unchanged, although it is worth noting that the bandwidth
of the resulting stiffness matrix is increased due to the larger support of the NURBS basis
functions.

3.6 Lagrange and Hermite enrichment

Two enrichment techniques are investigated in [Sauer (2011)], Lagrange and Hermite enrich-
ment. The Lagrange enrichment uses higher-order Lagrangian basis functions on the surface in
2D and 3D. Only the quadratic enrichment Q1C2 is compared to the NURBS enrichment, since
high-order Lagrangian interpolation is prone to oscillate.
The Hermite surface enrichment, Q1CH, yields a C1-continuous surface. This is done by adding
degrees of freedom for the surface derivatives on the contact surface. The formulation achieves
very good results and is compared to the NURBS enrichment, but it is not available for 3D.

4 Numerical examples

The performance of NURBS-enriched contact elements is illustrated by several numerical exam-
ples and compared to standard linear finite elements as well as Hermite and quadratic Lagrange
enriched contact elements. In the first example, two-dimensional frictionless ironing, contact
leads to local tangential motion between the bodies. In contrast, local motion in normal direc-
tion is caused by the adhesive contact forces in the second example, the peeling of an elastic
strip. The third example, the delamination of a double cantilever beam, combines both local
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normal and tangential motion in the contact zone. The contact-surface enrichment is applied
to a three-dimensional example with two deformable bodies in the last example.

4.1 Frictionless ironing

We first consider a deformable half-cylinder B1 sliding over a deformable block B2. The problem
set-up is taken from [Sauer (2013)], which considered surface enrichments with Q1C2 and Q1CH
elements. Initially, the block has the dimensions 10L0 × 2L0 and the cylinder a radius of L0.
A vertical displacement of 2/3L0 is applied to the top of the cylinder, followed by horizontal
frictionless sliding, illustrated in Figure 4. The base of the block is fixed and periodic boundary
conditions are applied on either end. Contact between the bodies is treated with the penalty
method, see equation (5), with εn = 1000E0/L0. Both bodies use an isotropic, non-linear
Neo-Hookean material model [Zienkiewicz and Taylor (2005)]

σ =
Λ

J
(ln J)I +

µ

J
(FF T − I) , (21)

where J is the determinant of the deformation gradient F and I is the identity tensor. The
shear modulus µ = E/(2(1 + ν)) and bulk modulus Λ = 2µν/(1 − 2ν) are expressed in terms
of Young’s modulus E and Poisson’s ratio ν, which are taken as E1 = 3E0, E2 = E0 and
ν1 = ν2 = 0.3. Parameters L0 and E0 are used for normalization of the model. Three nested
meshes are considered with 4, 8, and 16 elements per L0 on the block. The coarsest mesh is
shown in Figure 4. The entire upper surface of the block and the curved surface of the cylinder
are considered as the contact surface that is enriched.
First, we compare the NURBS-enriched contact elements Q1N2 to standard linear elements
Q1C1, quadratic Lagrange enriched elements Q1C2, and Hermite enriched elements Q1CH.
During sliding, a non-physical oscillation of the contact force can be observed in both vertical
and horizontal direction, illustrated in Figure 5. The horizontal contact force ought to be zero
for the frictionless case considered here, and as the depression is fixed during sliding, the vertical
contact force should be constant. The two-half-pass contact algorithm described in section 2.1
is used, which evaluates the contact force on each surface separately. This leads to two contact
forces, P1 acting on the half-cylinder and P2 acting on the block. For the horizontal contact
force Px on the left of Figure 5, the forces P1,x and P2,x are indistinguishable for the enriched
contact elements at this scale, the difference is only visible for standard linear elements, for
which it is also very small. In vertical direction on the right of Figure 5, the difference between
both contact forces is more pronounced for all element types.

The oscillation amplitude of the contact force can be defined in two different ways. The total
oscillation amplitude

∆P = max(P1, P2)−min(P1, P2) (22)

Figure 4: Set-up of the ironing problem.
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Figure 5: Oscillation of the horizontal and vertical contact force, Px and Py respectively, on
each body for Q1C1 and surface enrichments Q1C2, Q1CH, and Q1N2 on the coarsest mesh.

measures the difference between the maximum force and the minimum force over both surfaces.
Alternatively, the amplitude stemming only from the enriched contact elements without the
error induced by the two-half-pass contact algorithm

∆Pece = max (∆P1, ∆P2) (23)

with ∆Pk = max(Pk) − min(Pk) considers the maximum of the oscillation amplitude of the
contact force measured on each surface separately.

The close-up view in Figure 6 shows that while the contact forces remain indistinguishable for
Q1C2 and Q1CH elements also at this scale, a small difference in the forces P1,x and P2,x is
evident for Q1N2 elements. This is due to the smaller number of degrees of freedom on the
surface, which limits the conformity of both surfaces. The possibility of conforming meshes is
further limited by the use of different basis functions on both surfaces: while the weights of the
control points of the initially flat surface of the block are all 1, effectively reducing the NURBS
basis to a B-splines basis, the values of the weights on the cylinder surface vary in order to
initially describe an exact half-circle.

With Q1C2 and Q1CH elements, the horizontal contact force oscillation ∆Px is reduced to 2%
of that observed with linear elements. Using Q1N2 elements, ∆Px is reduced to 1.7%. This
reduction is remarkable, considering that the discretization with Q1N2 elements has only two
degrees of freedom more than the linear discretization, independent of the mesh refinement. In
comparison, the use of Q1C2 elements increases the degrees of freedom by 24 and Q1CH by 26 on
the coarsest mesh. The increase of degrees of freedom grows with the number of elements on the
surface with the Q1C2 and Q1CH enrichments. In conclusion, the reduction of the oscillation
with Q1N2 elements can be attributed to the C1-continuity of the surface, as the number of
degrees of freedom is comparable to linear C0 elements. The significant improvement provided
by a C1-continuous surface can be seen in the close-up view of the mesh with Q1C1 elements
compared to Q1N2 elements during sliding in Figure 7. Non-physical gaps appear between both
bodies with linear elements and they interlock during sliding due to the non-smooth surface.

In vertical direction, the two-half-pass algorithm has a greater influence on the results for
NURBS enriched elements than on those for other enriched elements. For Q1C2 and Q1CH
elements, the oscillation of the vertical contact force oscillation ∆Py ≈ ∆Py,ece is reduced to
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Figure 6: Oscillation of the horizontal contact force Px on each body for Q1C2, Q1CH, and
Q1N2 elements on the coarsest mesh.

13% for Q1C2 and 9% for Q1CH. For Q1N2 elements, the oscillation ∆Py is reduced only to
58%. Excluding the influence of the contact algorithm, the error ∆Py,ece is reduced to 41%.
The greater influence of the two-half-pass algorithm is accredited to the limiting factors to
conforming meshes discussed above.

Next, the different refinement strategies discussed in section 3.3 and their convergence are
examined. Refining the model via k-refinement leads to the element sequence Q1N2, Q1N3,
and Q1N4. Recall that this refinement leads to high continuity across element boundaries,
basis functions with large support, and node agglomeration at patch edges and points of reduced
continuity. Refining the model with the proposed surface oriented approach yields the element
sequence Q1N2, Q1N2.1, and Q1N2.2. This refinement strategy leads to a C1-continuous surface
description across all element boundaries on the contact surfaces and results in more degrees
of freedom on the contact surface. Note that the appearance of the mesh in terms of element
size and geometry is identical for all meshes, merely the continuity and the number of control
points changes.

The results of both approaches for the mesh with 8 elements per L0 are illustrated in Figure 8
for the horizontal contact force and in Table 2 for both force components. One step of the
surface-oriented refinement approach already leads to a major reduction of the oscillation to
28.9% and 13.5% in horizontal and vertical direction, respectively, compared to the enriched

Figure 7: Close up of Q1C1 (left) and Q1N2 (right) mesh during sliding, colored by stress
invariant I1 = tr (σ)/E0.
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Figure 8: Oscillation of the horizontal contact force on each body for different refinement
techniques: k-refinement on the left, surface-oriented refinement on the right.

enrichment ∆Px,ece ∆Py,ece

Q1N2 100% 100%
Q1N3 35.0% 59.0%
Q1N4 39.0% 47.2%

Q1N2.1 28.9% 13.5%
Q1N2.2 11.5% 11.9%

Table 2: Reduction of the horizontal and vertical contact force oscillation using different refine-
ment techniques.

Q1N2 elements. Not only is the improvement smaller with k-refinement, the horizontal contact
force oscillation even increases from Q1N3 to Q1N4. The reason for this is the increasing
support of the basis functions with increasing continuity across element boundaries. A sharp
contact line cannot be represented by these very smooth basis functions, leading to a smearing
of the contact zone. These results motivate the preference of surface-oriented refinement over
k-refinement for surface-effect dominated computations.
In addition to the reduction of the oscillation, Figure 8 also illustrates that the error induced
by the two-half-pass contact algorithm becomes negligible with increasing refinement for both
refinement techniques, as the contact forces on both surfaces become indistinguishable.

Finally, the convergence of the NURBS enriched elements with mesh refinement is considered,
using three nested meshes. Figure 9 shows the convergence of the horizontal contact force oscilla-
tion amplitude ∆Px,ece and the vertical contact force oscillation amplitude ∆Py,ece, respectively.
Both k-refinement and surface-oriented refinement are considered.

For all elements, mesh refinement leads to smaller oscillation amplitudes. Considering ∆Px,ece

for Q1N4 elements, poor results are achieved with high smoothness in combination with a coarse
mesh. This is due to the smeared contact zone, with becomes smaller as we refine the mesh.
The surface-oriented refinement again accomplishes better results than k-refinement.

4.2 Peeling of an elastic strip

The second example we consider is the peeling of an elastic, initially flat strip adhering to a
flat, rigid surface. The problem set-up, depicted in Figure 10, is taken from [Sauer (2011)].
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Figure 9: Amplitude of the horizontal contact force ∆Px,ece (top) and the vertical contact force
∆Py,ece (bottom) for different refinement techniques: k-refinement on the left, surface-oriented
refinement on the right.

A rotation Θ is applied at the right boundary, which yields a constant moment during peeling.
The strip has the dimensions 200L0 × 10L0 and is discretized with 160 × 8, 240 × 12, and
320× 16 elements. The three discretizations will be referred to as mesh 8, mesh 12, and mesh
16 according to the number of elements over the height. Isotropic, non-linear Neo-Hookean
material according to equation (21) with E = E0 and ν = 0.2 is considered. Adhesive van der
Waals forces which are described by equation (6) act on 75% of the surface. The parameters r0 =
0.4nm and AH = 10−19J are chosen as in [Sauer (2011)]. To avoid locking, enhanced assumed
strain elements are used in the bulk [Simo and Armero (1992)]. For the enriched elements on
the contact surface no such treatment is considered. The influence of one enriched element
layer without enhanced strain methods has been shown to not have a significant influence on
bending performance [Sauer (2011)]. The deformation of a coarse mesh with 40 × 2 elements
during peeling is illustrated in Figure 11 for Q1N2.1 elements. The elements are colored by

Figure 10: Problem set-up of the peeling example. A rotation Θ is applied at the right boundary.
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Figure 11: Peeling of an elastic strip at 90◦, enriched with Q1N2.1 elements, colored by I1 =
tr(σ)/E0. Control points are plotted as white circles, standard finite element nodes as black
squares.
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Figure 12: Comparison of the bending moment oscillation.

I1 = tr(σ)/E0 and the control points are plotted as white circles, standard finite element nodes
as black squares.

During peeling, the moment at the right boundary of the strip oscillates around a constant
value with a wavelength governed by the element length. A reduction not only of the amplitude
of the oscillation, but also the steep negative slope which causes difficulties in convergence of
the Newton solver is desired. Comparing Q1N2 elements to linear finite elements, the resulting
peeling moment only improves slightly, reducing the amplitude to 90% and the negative slope
to 80% on mesh 12, see Figure 12 left. The main difference between the Q1N2 and the Q1C1
surface is the C1-continuity, as the Q1N2 discretization only has two additional degrees of
freedom. Hence, the improvement achieved with C1-continuity is not very large for this problem.
Applying one step of order elevation to each Q1N2 element results in Q1N2.1 elements, that
reduce the peeling moment oscillation amplitude to 6.3% and the negative slope to 2.5% on
mesh 12. These values are slightly better than the results achieved with Hermite enrichment,
Q1CH, which reduces the amplitude to 6.7% and the negative slope to 2.6%, see Figure 12
right. In terms of continuity and both degrees of freedom per element and in total, Q1N2.1 and
Q1CH are identical, which explains the very similar results.

Refining the mesh, the convergence rate of the oscillation amplitude is the same for all element
types. But as Figure 13 shows, the amplitude of the oscillation differs in its absolute value. The
Q1C1 and Q1N2 discretizations fail to converge on the coarsest mesh. The figure also illustrates
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Figure 13: Amplitude of the oscillation of the bending moment for different element types and
discretizations.
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Figure 14: Increase of bending moment oscillation for surface-oriented refinements other than
Q1N2.1.

that elements with higher smoothness through k-refinement, Q1N2, Q1N4, and Q1N8, do not
decrease the amplitude as well as Q1N2.1 elements with more degrees of freedom on the surface.

An interesting observation is that Q1N2.1 delivers the best results of all tested NURBS en-
richments. While other surface-oriented refinements like Q1N2.2 or Q1N3.1 also decrease the
oscillation error more than k-refined meshes, they all have a larger amplitude and steeper nega-
tive slope than Q1N2.1, see Figure 14. The reason the Q1N2.1 elements outperform the others
is subject of ongoing research. A closer look at the control points on the surface and the control
polygon they span leads to the observation, that too many degrees of freedom on the surface
may be counterproductive for this problem. As depicted in Figure 15, the control points on the
surface oscillate with increasing amplitude in the peeling zone with increasing order elevation t.
For visibility, the control points of each mesh are shifted by 1L0 in x-direction and −0.0015L0

in y-direction with respect to the previous mesh. The result of the oscillating control points
are waves on the surface, which are not as pronounced as in the control polygon due to the
variation diminishing property of splines, but affect the accuracy of the computation.
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Figure 15: Control polygon for different element enrichments at the peeling front.

4.3 Delamination of a double cantilever beam

The third example considers the debonding of two flexible strips. It is taken from [Sauer (2013)]
and the set-up is depicted in Figure 16. Both strips measure 20L0×L0 and are meshed in a non-
conforming manner. A vertical displacement is applied to the upper strip B1 at the midpoint
of its right boundary while the lower strip B2 is fixed at the midpoint of its right boundary,
allowing both strips to rotate around these points. Isotropic, non-linear Neo-Hookean material
according to equation (21) is used for both bodies with E1 = 3E0, E2 = E0, and ν1 = ν2 = 0.3.
The strips are bonded along their initially touching surfaces, described by the cohesive zone
model in equation (7) with parameters T0 = 0.2E0 and g0 = 0.05L0. No cohesive forces act
between the bodies along the part Ld = 5L0 on the right-hand side, which is considered initially
debonded. Since penetration is not accounted for in the cohesive zone model (7), an additional
quadratic penalty method with penalty parameter εn = 50E0/L0 is used to prevent penetration.
Since the upper strip is three times as stiff as the lower strip, the bonded strips rotate during
peeling, shown in Figure 17. This leads to a mixture of locally normal and tangential motion
in the debonding zone.

Using linear elements, a non-physical oscillation of the peeling force is observed during delam-
ination, see Figure 18. Considering the k-refined elements Q1N2, Q1N3, and Q1N4, a slight
reduction of the oscillation is achieved, see Figure 18 left. Using the surface-oriented refinement
technique, Q1N2.1, Q1N2.2, and Q1N3.1, the oscillation is reduced significantly. The oscillation
amplitudes are given as percentage of the amplitude of Q1C1 elements in Table 3, including the
results obtained with Q1C2 and Q1CH elements.
Like in the previous peeling example in section 4.2, Q1N2.1 and Q1CH yield very similar re-

Figure 16: Double cantilever beam problem set-up
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Figure 17: Deformation of the double cantilever beam problem with Q1N2 elements at the onset
of debonding, colored by I1 = tr(σ)/E0. In the close-up, the control points are plotted as white
and black circles for B1 and B2, respectively.
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Figure 18: Oscillation in peeling force for different refinement techniques.

sults for the oscillation of the force. The maximum difference in the peeling force between
both enrichments is four orders of magnitude smaller than the value of the force. Also, the
refinement Q1N2.1 plays a special role again, as the oscillation amplitudes increase for other
surface-oriented refinements. Nevertheless, the reduction of the oscillation to 11.9% is still
better than the results achieved with k-refined surfaces.

4.4 Three-dimensional twisting

In this example, the surface enrichment is applied to a three-dimensional problem. A cube of
size 2L0×2L0×2L0 is fixed on its lower surface such that it can expand around the midpoint,
but rotation around and movement in direction of the vertical axis are restricted. A hollow
hemisphere with an outer radius of R = L0 and a wall-thickness of 1/3L0 is centered above
the cube. First, a frictionless downward displacement of L0 is applied to all nodes on the
ring formed by the upper surface of the hemisphere, followed by a frictionless rotation of 90◦

around the vertical axis. Three meshes are considered, discretizing the cube with 23, 43, and
83 elements and the hemisphere with 32, 72, and 112 elements over the curved surface, and 1,
2, and 3 elements in radial direction. The initial mesh is created using Q1N2 elements on the
contact surfaces. To compare it to linear elements, the corner points of the Q1N2 elements are
used as nodes for the linear mesh. The contact algorithms implemented for NURBS-enriched
elements can also be used directly for linear elements by expressing them as Q1N1 elements with
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Enrichment Oscillation amplitude

Q1C1 100.0%
Q1N2 76.6%
Q1N3 55.4%
Q1N4 46.6%
Q1N2.2 11.9%
Q1N3.1 11.9%
Q1CH 6.7%
Q1N2.1 6.6%

Table 3: Peeling force oscillation amplitude for different enrichments and refinement techniques
compared to linear elements.

mesh 2 mesh 4 mesh 8 mesh 2 mesh 4 mesh 8

Figure 19: Discretization of the geometry with Q1N2 on the left, Q1N1=Q1C1 on the right.

all weights set to one, which yield identical basis functions to Q1C1 elements. The NURBS-
enriched and linear meshes are depicted in Figure 19, where the hemisphere has been elevated
for better visualization. Four elements on the hemisphere are degenerated to triangles. As the
displacement of the degenerated edges is prescribed by the boundary conditions, they have no
negative impact on the results. Creating the hemisphere with these degenerated elements allows
for an entirely C1-continuous surface with Q1N2 elements.

Neo-Hookean material according to equation (21) is used for both bodies, with Ecube = E0,
Esphere = 5E0, and νcube = νsphere = 0.3. Contact is modeled with the penalty method,
equation (5), with penalty parameter εn = 100E0/L0. The problem set-up is illustrated in
Figure 20, where a quarter of the block and half the hemisphere have been cut to reveal the
internal mesh and stress state. It also allows a better view of the surface deformation. The
deformed meshes are colored by I1 = tr (σ)/E0.

All three components of the contact force exhibit non-physical oscillations during rotation of the
hemisphere. The vertical contact force, that should remain constant, and the torque around the
rotation axis, that should be zero, are analyzed. Their deviations are summarized in Table 4 for
Q1N2 and Q1C1 elements. The error in the vertical contact force ∆Pz is calculated according
to equation (22) while the maximum deviation from zero is taken as measure for the error of
the torque around the rotation axis. NURBS-enriched elements outperform linear elements by
a factor of 7.5, 2.0, and 1.2 for increasing mesh refinements regarding the vertical contact force.
The torque around the rotation axis is improved by factors of 28.5, 5.1, and 4.5 for increasing
mesh refinements. In this example, results achieved with Q1N2 elements are of comparable
accuracy to the results achieved with the next finer linear mesh.

The deformed contact surfaces and the contact pressure acting on them are shown in Figure
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Figure 20: Twisting problem set-up, cut to show internal mesh: 1. Initial geometry 2. Geometry
after depression 3. Geometry after rotation by 90◦. The deformed meshes are colored by
I1 = tr (σ)/E0.

mesh
∆Pz max(abs(Mz))

Q1N2 Q1C1 Q1N2 Q1C1

2 7.778 x 10−2 5.822 x 10−1 8.665 x 10−3 2.469 x 10−1

4 3.125 x 10−2 6.211 x 10−2 3.319 x 10−3 1.698 x 10−2

8 1.896 x 10−2 2.338 x 10−2 7.566 x 10−4 3.409 x 10−3

Table 4: Maximum oscillation errors in Pz normalized by EL2
0 and maximum deviation of torque

Mz from zero normalized by EL3
0 during rotation for different element types and meshes.

21 for Q1N2 and Q1C1 elements, as well as for a reference solution with Q1N2 elements on a
fine grid. For visibility, the contact surface of the hemisphere is elevated. The contact pressure
is computed with the post-processing scheme proposed in [Sauer (2013)], which smooths the
contact pressure using the finite element interpolation. Considering the contact pressure, the
higher degree of smoothing for Q1N2 elements compared to for Q1C1 elements is visible. This
is due to the C1 continuity of the interpolation which is also used for smoothing. Compared
to the reference computation, both NURBS enriched and linear elements deliver satisfactory
results for the contact pressure. Concerning the deformation of the contact surfaces, the Q1N2
elements are able to capture it more accurately than linear elements.

Considering the efficiency of the formulation, it is obvious that the evaluation of a Q1N2 element
with 39 degrees of freedom is computationally more expensive than the evaluation of a tri-linear
element with 24 degrees of freedom, or 27 and 12 degrees of freedom on the surface, respectively.
However, the use of a smooth C1 surface description leads to a reduction of the number of
Newton iteration steps needed for convergence. For increasing mesh refinements 2, 4, and 8,
the maximum number of Newton steps needed for one load-step are 14, 13, and 20 for linear
elements, and 8, 7, and 6 for Q1N2 elements. Mesh-refinement reduces the necessary number
of Newton iterations for the NURBS-enriched elements while no trend is observed for Q1C1
elements. Independent of mesh-refinement, the problem of interlocking elements remains at a
smaller scale for linear elements. The considerable reduction of Newton iteration steps due to
the faster convergence leads to a reduction of the runtime with Q1N2 elements by 35% compared
to linear elements. As noted above, the code used for the comparison is identical, using Q1N1
elements for the linear case.
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Figure 21: Post-processed contact pressure for Q1C1 (left) and Q1N2 (middle) compared to fine
reference solution (Q1N2, right). The elements are colored by the contact pressure normalized
by E0.

5 Conclusion

The novel surface enrichment formulation based on isogeometric analysis presented in this work
improves the accuracy of contact computations, even increasing efficiency in some cases. It com-
bines an at least C1-continuous surface description with high-order surface integral evaluation.
Improved accuracy of the deformation and contact forces are achieved for both two-dimensional
and three-dimensional contact problems with deformable solids. The evaluation of an enriched
contact element comes at a higher computational cost than that of linear elements, but in
general only a small number of elements are enriched maintaining efficient linear elements for
the vast majority of the domain. Additionally, it is shown that the improved performance of
the enrichment is able to reduce the number of Newton iterations necessary for convergence,
reducing the overall runtime of the analysis.
Several extension are planned for future work. Frictional contact problems are expected to
benefit greatly from the smoothness of the surface and high accuracy of the contact integral
evaluation. Also the use of T-splines rather than NURBS will be considered, offering the possi-
bility of local mesh refinement. The development of adaptive mesh enrichment techniques is a
possibility to further increase the efficiency of the presented formulation. Finally, the proposed
enrichment technique is believed to not only improve contact computations, but could also be
used for other surface-effect dominated applications. Examples could include flow problems
around deformable solids leading to fluid-structure interaction problems, free surface flows, or
electrostatic or electromagnetic interaction.
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