Ruhr University Bochum
Institute for Structural Mechanics

Universitätsstraße 150
44801 Bochum

Email:
Tel: 0234 /

download vCard




Lectures


  • UI Bachelor

  • Statik und Tragwerkslehre A (UI-B03)
  • BI Bachelor

  • Statik und Tragwerkslehre A (BI-11)
  • Statik und Tragwerkslehre B (BI-15)
  • BI Master

  • AFEM - Angewandte statische und dynamische Tragwerkssimulationen (BI-WP06)
  • IFEM - Inelastic Finite Element Methods for Structures (BI-WP59)
  • LFEM - Finite Elemente Methoden (BI-P08)
  • NFEM - Nonlinear Finite Element Methods for Structures (BI-WP05)
  • OFEM - Computational Structural Optimization (BI-W74)
  • PFEM - Objektorientierte Modellierung und Programmierung der FEM (BI-W74)
  • RANMS - Recent Advances in Numerical Modelling and Simulation (BI-W35)
  • RFEM - Recent Advances in Numerical Modelling and Simulation (BI-W35)
  • SFEM - Computational Modeling of Membranes and Shells (BI-WP57)
  • TFEM - Transient Finite Element and Finite Difference Methods (BI-WP60)
  • UFEM - Uncertainty Quantification in FE Analyses with Surrogate Modeling (BI-WP58)
  • CompEng

  • AFEM - Applied Computational Simulations of Structures (CE-WP11)
  • Computational Modeling of Membranes and Shells (CE-WP16)
  • Finite Element Methods in Linear Structural Mechanics (CE-P05)
  • Inelastic Finite Element Methods for Structures (CE-WP06)
  • NFEM - Nonlinear Finite Element Methods for Structures (CE-WP04)
  • PFEM - Object-oriented Modelling & Implementation of Structural Analysis Software (BI-W39, CE-WP10)
  • TFEM - Transient Finite Elemen and Finite Difference Methods (CE-WP30)
  • Uncertainty Quantification in FE Analyses with Surrogate Modeling (CE-WP29)
  • Subsurface

  • Finite Element Methods in Linear Structural Mechanics (SE-C-2)
  • Inelastic Finite Element Methods for Structures (SE-CO-20)
  • NFEM - Nonlinear Finite Element Methods for Structures (SE-CO-23)
  • Uncertainty Quantification in FE Analyses with Surrogate Modeling (SE-O-17)

Publications

2023
[ 1 ]Thang X Duong; Vu N Khiêm; Mikhail Itskov; Roger A Sauer
A general theory for anisotropic Kirchhoff–Love shells with in-plane bending of embedded fibers
Mathematics and Mechanics of Solids, 2023-05
DOI ]
2022
[ 2 ]Philipp Quenzel; Hauke Kröger; Boris Manin; Khiêm Ngoc Vu; Thang Xuan Duong; Thomas Gries; Mikhail Itskov; Roger A. Sauer
Material characterisation of biaxial glass-fibre non-crimp fabrics as a function of ply orientation, stitch pattern, stitch length and stitch tension
Journal of Composite Materials, 2022-11
DOI ]
[ 3 ]Thang X. Duong; Mikhail Itskov; Roger A. Sauer
A general isogeometric finite element formulation for rotation‐free shells with in‐plane bending of embedded fibers
International Journal for Numerical Methods in Engineering, 2022-07-30
DOI ]
2021
[ 4 ]Duong, T.X.; Itskov, M.; Sauer, R.A.
A general isogeometric finite element formulation for rotation-free shells with embedded fibers and in-plane bending
arXiv, 2021
DOI ]
2020
[ 5 ]Duong, T.X.; Khiêm, V.N.; Itskov, M.; Sauer, R.A.
A general theory for anisotropic Kirchhoff-Love shells with embedded fibers and in-plane bending
arXiv, 2020
DOI ]