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Starting from a fully atomistic system, we outline a general approach to obtain
an approximate continuum surrogate model incorporating specific kinematic state
variables. The continuum mechanical system is furnished with a hyperelastic ma-
terial model. We then adapt the procedure to slender structures with beam-like
character, such as Silicon nanowires or carbon nanotubes. The surrogate model
can be described as a geometrically exact beam, which can be treated numerically
using finite elements. Based on molecular dynamics simulations, we show how to
obtain for a given atomistic beam system both a set of suitable deformed states as
well as generalized stress and strain measures. Finally, we benchmark the obtained
continuum model by assessing its accuracy for a beam coming into contact with
an infinite Lennard-Jones wall.

1 Introduction

Recently, the mechanical behavior of nanoscale beam-like structures, whose extent
in one spatial dimension is much larger than in the other two dimensions, has
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attracted much interest. Examples of beam-like structures include nanowires (also
known as nanorods or nanobeams), which are very small metal or semiconductor
crystalline structures used to create field-effect transistors, LEDs, nanoscale lasers,
and many other devices. They also form a promising class of candidates for use
in nano-electromechanical systems (NEMS) [1]. Another example are carbon nan-
otubes (CNT), which can be thought of as rolled-up graphene sheets and are of
interest due to their remarkable mechanical properties, such as very high tensile
strength and Young’s modulus [2], as well as their tunable electrical behavior [3].
Further examples include cellulose bundles [4]; biopolymers [5–7], including DNA
[8]; and other organic macromolecules.

In this work, we develop a method to systematically obtain a hyperelastic mate-
rial description from a molecular dynamics (MD) model of an atomistic beam-like
system. No special assumptions are made in advance about the interatomic po-
tential governing the material. The resulting information can then be used as an
efficient continuum mechanical surrogate model for quasi-static simulations, which,
in contrast to existing models, represents the system at a finite temperature. This
continuum model is based on geometrically exact beams, also known as the special
Cosserat theory of rods) [9, 10], and consists of a homogenized description of the
material behavior of the original structure as well as of its geometrical and mass-
related properties. The numerical treatment is handled by a suitable finite element
method (FEM). Subsequent applications then require only problem-specific data
such as applied forces or moments and interaction energies with external bodies.
We also show how the required steps fit into an abstract procedure that can be
adapted to other continuum theories that incorporate different kinematic assump-
tions and state variables.

General methods to identify constitutive laws for beam structures and related
continuum mechanical systems, such as shells or sheets, have already received con-
siderable attention. Originally formulated for bulk systems, the Cauchy-Born rule
(CBR), see for example [11], relates macroscopic deformations (usually given as
deformation gradients) to microscopic ones but is by itself valid only at zero tem-
perature. The interatomic potential is then evaluated for these displaced atomic
positions. Several variants of the bulk CBR have been suggested. For example,
Arroyo and Belytschko [12] develop an exponential CBR to study the mechanical
behavior of carbon nanotubes. A further extension is the local CBR [13], which
provides a framework to obtain atomistically derived constitutive laws for a large
class of continuum theories based on various kinematic constraints. Another ver-
sion of the CBR is employed in the objective quasicontinuum (OQC) method [14],
which represents an atomic system exhibiting an inherent repeat pattern, so-called
fundamental domains, through an array of a few elements underlaid with copies
of the fundamental domain. The authors then demonstrate the feasibility of this
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approach for a copper nanobeam. Friesecke and James [15] and Schmidt [16] have
developed a theoretical framework for constructing the (potential) energy of crys-
talline films and nanotubes. Chandraseker et al. [17] and Fang et al. [18] present
an extended Cosserat beam theory that can undergo cross section deformations
and describe the fitting of the potential energy based on quantum-mechanical cal-
culations. Chen and Lee [19, 20] present a connection of micromorphic theory to
MD.

The potential energy minimized in the zero-temperature case is much more
accessible than the Helmholtz free energy, which is needed to derive stresses at
isothermal thermodynamic equilibrium. The CBR allows the connection between
macroscopic and microscopic strains to be expressed directly. Such relationships
do not exist for finite temperatures and thus stresses can no longer be evaluated
on the fly. Instead, one can approximate the free energy and its derivatives us-
ing methods such as the quasi-harmonic approximation [21] or the local harmonic
approximation [22]. Alternatively, one can first determine the stress-strain rela-
tionship and then use a correspondingly fitted material law [23–25]. Here, we will
follow this sequential approach as well. An alternative information-passing strat-
egy is provided by the generalized mathematical homogenization (GMH) theory
[26], in which the atomistic equations of motion are related to a coarse-scale de-
scription through suitably transformed coordinates. An asymptotic expansion of
these equations then leads to a continuum description of the coarse scale that can
be solved using a FEM. GMH has also been extended to finite temperatures [27]
and successfully applied to heat conduction problems. The approach in the present
work yields a parameterized constitutive law that can readily be used in existing
finite-element codes. No restriction is imposed on the type of interatomic po-
tentials; only Coulombic interactions typically are not captured, because of their
long-range influence. The issue of capturing heat transfer behavior from atom-
istic simulations is further studied in Admal and Tadmor [28] and Davydov and
Steinmann [29].

The remainder of this article is organized as follows. In section 2, we describe
an abstract workflow for obtaining constitutive laws for continuum theories with
arbitrary kinematics, which we illustrate for geometrically exact beams in section
3. Section 4 provides numerical results obtained for CNTs and silicon nanowires
(SiNW). In particular, contact between these beam structures and Lennard-Jones
walls is studied and explicit formulas for the interaction energy of undistorted
beam cross sections with such walls are presented. Finally, conclusions and an
outlook are provided in section 5.
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Figure 1: The key steps for obtaining and validating a temperature-specific hyper-
elastic material law for a continuum system.

2 Outline of a general procedure

Before exploring how to transfer an atomistic beam model to a continuous surro-
gate model, we introduce the general workflow, shown in figure 1, which is valid
for different kinds of systems and continuum theories. The procedure is strictly
sequential, with no flow of information from the continuum back to the atom-
istic side (which would represent a concurrent method). Our starting point is an
atomistic, possibly coarse-grained, system consisting of N particles with positions
q = (q1, . . . , qN) and linear momenta p = (p1, . . . ,pN). Its instantaneous total
energy is given by the Hamiltonian

H(q,p) = K(p) + Vint(q) + Vext(q), (1)

where K(p) = 1
2

∑N
i=1(pi · pi)/mi denotes the kinetic energy in terms of the linear

momenta pi and Vint is the frame-indifferent part of the internal energy which ac-
counts for interactions among the system’s particles. Vext subsumes additional in-
teractions with the environment. Now consider that the system is at a (metastable)
equilibrium that we take as the initial state. For solid-like materials, we can de-
fine an atomistic reference configuration [21], as the set of all time-averaged mean
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positions in the initial state:

A0 =
¶
Qi | i = 1, . . . , N

©
, Qi := 〈qi〉. (2)

Now suppose that we represent the system using a still-undetermined continuum
theory, in which each continuum point is underlaid with a local thermodynamic
system having n kinematic state variables or generalized strainsK = (K1, . . . , Kn).
In three-dimensional continuum mechanics these would usually correspond to, for
example, the n = 6 stretch components of the deformation gradient F . These are
also represented by the stretch tensor U of the polar decomposition F = RU.
Frame-indifference implies the thermodynamic system is independent of the three
rotatory components of R.

Our goal is a continuum mechanical surrogate model for atomistic problems
representing quasi-static processes at constant temperature and with a fixed num-
ber of particles. Thus, a new atomistic state is obtained by a series of small
perturbations of the boundary conditions in an NV T ensemble and subsequent
equilibrations, corresponding to applications where observation times are longer
than equilibration times and in particular longer than the time needed for any
viscous processes. This suggests that it is sufficient to consider the functional re-
lationship ψ = ψ(X,K, T ) between the kinematic state and the Helmholtz free
energy per unit mass at (quasi-)equilibrium, and to assume that the associated
thermodynamic tensions or generalized stresses are given by

κ(X,K, T ) =
∂

∂K
ψ(X,K, T ), (3)

which could, for example, correspond to the first Piola-Kirchhoff stress (divided
by reference mass density). The possibility of an explicit dependence of the con-
stitutive relations on the position is indicated by X, which specifies a material
point in the reference configuration for a suitable coordinate system. In the three-
dimensional case, this corresponds to a material coordinate X, in which case we
use a bold face symbol. It is known from statistical mechanics that the absolute
Helmholtz free energy of a system at equilibrium with a homogeneous kinematic
state K is

Ψ = Ψ(K, T ) = −kBT lnZ(K, T ), (4)

where the canonical partition function is given by

Z(K, T ) =
1

h3NN1! · · ·Ns!

∫
P(K)

exp
Ä
−H(q,p)/kBT

ä
dqdp (5)

with a total of N = N1 + · · · + Ns particles of s different species [30]. The phase
space P(K) ∈ R6N containing elements (q,p) is chosen to contain the atomic
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positions consistent with K; usually no restrictions are placed on the momenta.
This establishes the connection between the atomistic degrees of freedom and the
macroscopic free energy. It is clear that the 6N -fold integral in (5), as well as
partial derivatives of Ψ or of the density ψ usually cannot be evaluated in closed
form. Fortunately, these derivatives, such as stresses, can be approximated as time
averages using MD.

The main task now is to determine the stress-strain relationship between κ and
K in (3). We proceed as follows. Suppose that the atomic reference configuration
A0 represents a calibration system used only to obtain the desired constitutive
relation. A0 may be much smaller than the system sizes of the target applications,
but is still large enough for adequate statistical sampling.

We define a set of virtual deformation experiments (VDE), a set of boundary
conditions applied to A0 that drive the system to a deformed configuration A. The
boundary conditions are quite arbitrary and could consist of, for example, displac-
ing a subset of boundary atoms to a prescribed location or exerting additional
forces on all or parts of the atoms. To mimic an isothermal deformation process
at this stage, the displacements or forces of the VDEs are first imposed slowly
and are followed by sufficient additional equilibration time. Another requirement
is that the boundary conditions are chosen so that they neither restrict nor de-
flect the particles’ movement in some inner region of the calibration system. Thus,
when we determine values for the generalized stresses κ from the atomistic system,
all thermal vibrations are taken into account. For example, the virial expression
for the Cauchy stress [31] requires averaging over the individual linear momenta
associated with the currently deformed state.

Finally, if we can also obtain expressions for the strains K based on the atom-
istic trajectories, we can carry out a parameter-fitting procedure to obtain a func-
tional relationship such as (3). The method for obtaining generalized stresses
and strains from atomistic simulations must be developed for each continuum
theory that we want to use, as shown in the following section for geometrically
exact beams. Another scenario which fits into this abstract workflow is provided in
Schmidt et al. [25], which analyzes a three-dimensional polymeric system for which
the stress-strain relationship cannot be obtained using a classical representative
volume element.

The remaining steps in the workflow are the transfer of the initial geometry of
A0 to the continuum mechanical model and the determination of quantities related
to the masses of the atoms, such as mass density or inertia tensors. We refer
to the constitutive law, together with this information, as the surrogate model.
Afterwards, we can apply the constructed model. To validate our procedure, we
set up a benchmark problem in section 4.1 at both atomistic and continuum scales,
and then compare several resulting quantities of interest extracted from each test
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case. Problem details such as the applied loading conditions are independent of the
model construction stage. We do not expect to observe exact agreement in these
comparisons as homogenized continuum descriptions are obtained and atomistic
details are irrecoverably lost. Nevertheless, an approximate descriptions of the
material behavior of nanoscale beams is very useful for applications involving one or
more such beam structures, which may be larger or made of varying materials. Also
for coupled methods that concurrently handle atomistic and continuum domains,
one may need a reliable material description for the latter.

3 A surrogate model for beam-like atomic struc-

tures

We now set up a continuum mechanical surrogate model for atomic beam-like
structures using the workflow outlined in section 2. This procedure can be adapted
to any simulation where ordinary bulk representative volume elements cannot be
constructed. The latter usually require full three-dimensional periodicity, so that a
macroscopic strain F can be directly applied to the atomistic system, and stresses
can be averaged over the whole domain. To overcome this restriction, we use an
indirect approach, relating simultaneously determined stresses and strains in a set
of deformed states for a calibration system which is as small as possible but still
large enough to exhibit representative behavior. However, in the case of beams,
the cross section used must be the same as in the intended application problem,
since the extracted material properties strongly depend on the beam cross section.

3.1 Geometrically exact beams

We briefly present the main aspects of geometrically exact beams, adapted from
Antman [32], Simo [9], and [10]. A beam is a slender three-dimensional body with
stress-free reference configuration B0 and deformed current configuration B. The
former is given as a line of centroids R(S), parameterized with respect to the arc
length: |R′| ≡ 1. Here, S ∈ I = [0, L], where L is the total arc length. At every
position S there is a circular cross section1 C = {ζ ∈ R2 | ‖ζ‖ ≤ Rcs} of radius Rcs.
The cross sections’ orientation in space is described through the plane spanned by
two orthonormal director vectors Dα(S), α = 1, 2, which can vary over I. If we
define the domain P = C × I, the reference configuration can be parameterized
through the mapping

Φ : P → B0, (ζ, S) =
Ä
ζ1, ζ2, S

ä
7→ R(S) + ζαDα(S), (6)

1In general, there are no special requirements for the shape of the cross sections, nor must
cross sections be identical at each arc length.
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Figure 2: Schematic of a geometrically exact beam. Two exemplary cross sections
are shown, through which the central line r (black) passes. Also shown are the
three director vectors d1 (cyan), d2 (white), d3 (red).

where Einstein summation is implied for Greek index α = 1, 2. At time t, the
central line and directors attain new values r(S, t) and dα(S, t), respectively, which
form the parameterization for the current configuration:

ϕ : P × [0,∞)→ B, (ζ, S, t) 7→ r(S, t) + ζαdα(S, t) (7)

The current directors dα are still orthonormal and describe an undistorted, planar
cross section. One can thus obtain complete orthonormal bases by defining D3 :=
D1 × D2 and d3 := d1 × d2. These can be arranged as second-order tensors
indicating the change of the moving director bases,

Λ0(S) = Di(S)⊗Ei (8)

Λ(S, t) = di(S, t)⊗Ei. (9)

with summation over the Latin index i = 1, 2, 3. A schematic illustration of such
a beam is shown in figure 2. The composition

χ(·, t) = ϕ(·, t) ◦Φ−1 : B0 → B (10)

is then the usual deformation mapping from three-dimensional continuum mechan-
ics. Substituting it into the balance equations of linear and angular momentum
yields the governing equations for the beam, which are now reduced to one spatial
dimension:

n′(S, t) + ñ(S, t) = M0(S)r̈(S, t) (11a)

m′(S, t) + r′(S, t)× n(S, t) + m̃(S, t) = π̇(S, t), (11b)

where n is the stress-resultant force, m is the stress-resultant moment acting on a
cross section, ñ and m̃ are distributed external forces and torques per unit length,
and where primes and dots denote partial derivatives with respect to S and t,
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respectively. Conservation of mass is also presumed. Furthermore, we introduce

π(S, t) = iρ(S, t)w(S, t) (angular momentum of cross section)

(12)

iρ(S, t) = Mαβ
2 (S)[δαβI − dα(S, t)⊗ dβ(S, t)] (spatial inertia tensor) (13)

w(S, t) = ax
Ä
Λ̇(S, t)Λ(S, t)T

ä
(angular velocity vector) (14)

where ax(·) returns the axial vector of a skew-symmetric second-order tensor. Fi-
nally we introduce the zeroth, first and second moments of mass of the cross
section

M0(S) =
∫
C
ρ0(ζ, S) dζ, (15)

Mα
1 (S) =

∫
C
ζαρ0(ζ, S) dζ, (16)

Mαβ
2 (S) =

∫
C
ζαζβρ0(ζ, S) dζ, (17)

for the reference mass density ρ0(ζ, S). These can be interpreted as mass density,
centroid and moment of inertia of the cross section, respectively. For simplicity,
(11) already assumes that Mα

1 ≡ 0 for α = 1, 2. The unknowns are the central
line r and the rotation Λ. The stress-resultant force n and moment m act as
generalized stresses, and are obtained as partial derivatives of the free energy. The
kinematic descriptors are given by the following strain measures [33]:

Γ = ΛT r′ −ΛT
0 R′ (18a)

Ω = ax
Ä
ΛTΛ′ −ΛT

0 Λ′0
ä
, “Ω = ΛTΛ′ −ΛT

0 Λ′0, (18b)

where ·̂ gives the skew-symmetric tensor for a given axial vector. The first strain Γ
captures shear and axial extension, while Ω is associated with bending and twist-
ing. Obviously, this formulation neglects possible changes in the cross-sectional
shape, such as warping or ovalization, although extensions exist to account for
these [34–39]. This typically leads to additional kinematic descriptors which must
obey additional balance laws. However in the standard case as described above,
the constitutive relations are given for the material counterparts N, M of force
and moment:

n = ΛN, N = ∂Γψ(S,Γ,Ω) (19a)

m = ΛM, M = ∂Ωψ(S,Γ,Ω) (19b)

Our main task is to determine the Helmholtz free energy (per unit reference length)
ψ. Numerical treatments of the PDE system (11) have been thoroughly studied
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[40–45]. One particular problem here is the proper representation and integration
of the rotation, which must remain in SO(3) and be adequately interpolated at the
quadrature points [46]. The most frequently used approach is a quaternion-based
formulation [40, 47–49]. We base our implementation on the work of Celledoni
and Säfström [50].

3.2 Transfer of geometry and mass-related quantities

Given an atomistic reference configuration A0 of initial mean positionsQi, the first
task in parameterizing the continuum model is to determine the initial position of
the line of centroids R(S) and the moving basis of directors Λ0(S), S ∈ I. We
assume that the reference line of centroids is aligned along the z-axis, R(S) =
S · E3, S ∈ I, and that the directors have no initial rotation, Λ0 ≡ I. We call
this the canonical reference configuration shown in figure 6a. To approximately
reconcile a set of given initial positions Qi with this assumption, we identify a
rigid transformation

T (X) = SX +C, S ∈ SO(3),C ∈ R3, (20)

that satisfies the following requirements when applied to the mean positions Qi:

1. The z-axis is chosen to be the axis line of the slenderest cylinder containing all
reference mean positions Qi, so that the transformed reference configuration
T (A0) lies along the z-axis. The beam’s length L is then the difference of
the largest and smallest z components.

2. The transformed cross section centroids should, on average, lie on the z-axis:

〈Mα
1 〉I =

1

L

∫
I
Mα

1 (S) dS
!

= 0, α = 1, 2 (21)

3. The principal axes of inertia of the transformed cross sections should, on
average, be aligned along the x- and y-axes:¨

M12
2

∂
I =

¨
M21

2

∂
I =

1

L

∫
I
M12

2 (S) dS
!

= 0 (22)

The calibration system is chosen large enough so that the average moments of
mass are statistically representative along the central line. Thus, material in-
homogeneities need not be resolved, and the moments of mass can be taken as
constant. In an application problem, the beam’s material properties can of course
vary over certain regions, each of which is parameterized based on different calibra-
tions. An appropriate transformation T can be found, for example, using Matlab’s
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Optimization Toolbox [51]. From here on, without loss of generality, we take T to
be the identity map to avoid having to transform the vectorial and tensorial quan-
tities needed for subsequent calculations. For a canonical reference configuration,
the strain measures (18) become

Γ = ΛT r′ −E3 (23a)

Ω = ax
Ä
ΛTΛ′

ä
, “Ω = ΛTΛ′ (23b)

3.3 Virtual deformation experiments

We now want to drive the atomistic system into a state as homogeneously deformed
as possible. As will be shown in section 3.5, the generalized stress measures n,m
can be obtained from phase averages. Since these are approximated as time av-
erages in MD, to properly sample phase space the atomic positions and momenta
must be consistent with an isothermal (NV T ) ensemble. In particular, the trajec-
tories must be representative for the imposed kinematic state and thus must be
allowed to freely explore the corresponding restricted phase space. The only con-
straint we apply is to prescribe positions for a set of boundary atoms ∂A0 ⊂ A0 at
the free ends and, to produce sheared configurations, sometimes along thin stripes
on the beam’s lateral surface. In particular, we impose a pair of target strains
(Γ0,Ω0) exactly at all boundary atoms Qi ∈ ∂A0. These boundary displacements
are applied slowly over time, starting at the initial positions Qi and finishing at
end positions given by the target strain. In our simulations, this is carried out over
1 ns, followed by 1 ns of additional equilibration and finally 2 ns of actual sampling
of the generalized stresses and strains in the now deformed state.

We derive the necessary displacements from the analytical description of a
continuum system that is homogeneously deformed as Γ0 and Ω0 everywhere.
First, (23a) yields

r′(S) = Λ(S) · (Γ(S) +E3); (24)

from (23b), we obtain
Λ′(S) = Λ(S) · “Ω(S). (25)

For an initial central line position rin and an initial rotation Λin at S = 0, we
obtain a system of ordinary differential equations for r and Λ:

r′(S) = Λ(S) · (Γ0 +E3), r(0) = rin (26a)

Λ′(S) = Λ(S) · “Ω0, Λ(0) = Λin (26b)
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Here, (26b) is uncoupled and immediately yields Λ(S) = Λin exp
Ä
S · “Ω0

ä
. We can

then integrate (26a) to obtain

r(S) = rin + Λin

ñ∫ S

s=0
exp
Ä
s · “Ω0

ä
ds

ô
· (Γ0 +E3). (27)

This integration can readily be carried out (Appendix A). For a beam whose end
at S = 0 coincides with the canonical reference configuration we have r0 = 0 and
Λ0 = I. To facilitate subsequent parameter fitting, we are especially interested in
pure strain states, where only one of the six strain components is non-zero. For
example, pure bending about the x-axis, Γ0 = [0, 0, 0], Ω0 = [Ω1, 0, 0], is described
in component form as

r(S) =

 0
1

Ω1
(cos(S · Ω1)− 1)

1
Ω1

sin(S · Ω1)

, Λ(S) =

1 0 0
0 cos(S · Ω1) − sin(S · Ω1)
0 sin(S · Ω1) cos(S · Ω1)

. (28)

Solutions for the remaining pure deformations are given in Appendix A. We have
now identified the exact configuration that a continuum beam with a homogeneous
strain would occupy. To obtain a candidate equilibrium state at finite temperature
with approximately the same strain from an MD simulation, we must prescribe
this configuration at the boundary particles of the atomistic beam. To induce
a realistic deformation, we carry this out slowly over some time span te. The
corresponding interpolation rules in time are given by:

r̂(S, t) =
1

te

Ä
(te − t) ·R(S) + t · r(S)

ä
=
te − t
te
·

0
0
S

+
t

te
· r(S), (29)“Λ(S, t) = Λ0

Ä
ΛT

0 Λ(S)
ä t
te = Λ(S)

t
te (30)

From these quantities we can set up the deformation mapping as“ϕ(ζ, S, t) = r̂(S, t) + ζαd̂α(S, t), (31)

with the directors d̂α extracted from “Λ. Now assume that an atom to be moved
is initially at position Q and belongs to the continuum reference configuration, in
which it has coordinates Φ(ζ, S) = Q. The actual displacement of the atom2 is
therefore

∆“ϕ(ζ, S, t) := “ϕ(ζ, S, t)−Φ(ζ, S). (32)

2In practice, the actual mean positions Q of the boundary atoms are not deformed. Instead,
their positions Q in the last timestep of the equilibration of the reference configuration are taken
as the starting point.
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Figure 3: The six pure deformation modes of a geometrically exact beam, applied
to an atomistic model of a nanowire.

Since the reference configuration is canonical, (ζ1, ζ2, S) = (Q1, Q2, Q3) and thus
we can express the displacement in terms of the atomic coordinates,

∆ϕ(Q, t) := ∆“ϕ(Q1, Q2, Q3, t) = “ϕ(Q1, Q2, Q3, t)−Q. (33)

which is suitable for implementation, as it can be evaluated for any given atom-
istic coordinate using (31). In figure 3, a sample nanowire is shown after being
deformed to each of the six pure strain states. Finally, we note that prescribing
positions for a boundary region ∂A0 does not cause the mean positions of the free-
moving atoms to exactly attain those particular strain values. We merely impose
the displacement to obtain candidates for deformed systems, from which we can
determine the actually occurring local stresses and strains.

3.4 Generalized strain measures from atomistic simula-
tions

Stresses and strains may be distributed non-homogeneously along the deformed
beam. Therefore, we subdivide the beam along its arc length into a number of
small segments Ij, j = 1, . . . , Nseg, of length ∆S = L/Nseg. A sample nanowire
with a highlighted segment is shown in figure 4. The set of atoms corresponding to
segment j in the reference configuration is denoted A0,j. The new mean positions
after deformation are called the current atomistic configuration:

A = { qi | i = 1, . . . , N }, qi := 〈qi〉, (34)
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where the time average is taken after equilibration with the applied deformation
boundary conditions. From the position changes of the atomic mean positions
from Qi to qi, i ∈ A0,j, we want to deduce the continuum strain measures Γ and
Ω. To this end, we construct an approximation χj for the continuous deformation
map χj in segment j that interpolates the discrete displacement information by
using the linear ansatz

q = χj(Q) ≈ χj(Q) := FjQ+ cj (35)

and determine Fj and cj from the following least-squares problem [cf. 25]:

1

2

∑
i∈A0,j

∥∥∥χjÄQi

ä
− qi

∥∥∥2
=

1

2

∑
i∈A0,j

∥∥∥FjQi + cj − qi
∥∥∥2 !

= min
Fj ,cj

. (36)

If atomic masses differ, a weighted cost function can be used. Similar choices for
describing local atomic deformations are given in Horstemeyer and Baskes [52] and
Zimmerman et al. [53, 54]. Since ∂Qχj ≈ Fj, the second-order tensor Fj plays
the role of an approximate deformation gradient. From (7) and (10), the actual
deformation gradient of a geometrically exact beam is given by

F (ζ, S) = d1(S)⊗ E1 + d2(S)⊗ E2 +ϕ′(ζ, S)⊗ E3. (37)

Forming weighted averages of dα and r′ over the beam segment domain C × Ij
yields

dα := 〈dα〉C×Ij =

∫
C×Ij dα(S)ρ0(ζ, S) dζdS∫
C×Ij ρ0(ζ, S) dζdS

=

∫
Ij dα(S)M0(S) dS∫
Ij M0(S) dS

=
1

∆S

∫
Ij
dα(S) dS (38a)

r′ := 〈r′〉C×Ij =

∫
C×Ij r′(S)ρ0(ζ, S) dζdS∫
C×Ij ρ0(ζ, S) dζdS

=
1

∆S

∫
Ij

r′(S) dS, (38b)

since M0 is a constant along the entire calibration system. At the same time
Mα

1 ≡ 0 and thus

〈ζαd′α〉C×Ij =

∫
C×Ij d

′
α(S)ζαρ0(ζ, S) dζdS∫

C×Ij ρ0(ζ, S) dζdS
=

∫
Ij d

′
α(S)Mα

1 (S) dS∫
Ij M0(S) dS

= 0. (39)

Hence, the averaged deformation gradient follows from (37) as

F j := 〈F 〉C×Ij = 〈d1〉C×Ij ⊗ E1 + 〈d2〉C×Ij ⊗ E2 + 〈r′ + ζαd′α〉C×Ij ⊗ E3

= d1 ⊗ E1 + d2 ⊗ E2 + r′ ⊗ E3. (40)
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Figure 4: Silicon nanowire with a highlighted beam segment, indicating a partic-
ular selection of atoms.

Equating the least-squares deformation gradient Fj with (40) yields, in matrix
form,

[Fj]
!

=
î
F j

ó
=
î
d1,d2, r′

ó
(41)

so the columns of [Fj] are just the averages of the directors and tangent vector
of the central line defined above. Although the directors dα at specific locations
(ζ, S) are orthonormal, this need not hold for the averaged versions dα. However,
we make this very assumption a priori and solve the minimization problem (36)
under the constraint dα · dβ = δαβ. This is reasonable for relatively small beam
segment lengths ∆S ≈ 10 Å. This allows us to define a completed director basis
for segment j as Λj :=

î
d1,d2,d3 = d1 × d3

ó
. Using (23), the strain measures on

beam segment j can be defined based on (40) as

Γj := ΛT
j r′ − E3, (42)

Ωj := ax
Ä
ΛT
j Λ′j

ä
, (43)

where the spatial derivative Λ′j is obtained via ordinary finite differences, although
this could be improved by a more suitable approximation scheme for orthogonal
matrices.

3.5 Generalized stress measures from atomistic simulations

We still need to determine the forces n and moments m acting on cross sections
of the beams from virtual deformation experiments. According to Simo [9], the
following relationship holds:

n(S) =
∫
C
P (ζ, S)E3 dζ =

∫
C
σ(ζ, S)d3(S) dζ, (44)

where P is the first Piola-Kirchhoff stress and σ denotes the Cauchy stress, and
the last equality follows from (37). We denote by rj the centroid of deformed
segment j and make the rather coarse approximations

σ(ζ, S) ≈ σ(rj), d3(S) ≈ d3 (45)
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throughout segment j. Hence (44) yields an approximate expression for the normal
force in segment j:

nj :=
∫
C
σ(rj)d3 dζ = R2

csπ · σ(rj)d3 (46)

There are several methods for connecting the Cauchy stress to atomistic simu-
lations [31]. To define a localized stress around the spatial point x, a common
approach is to use a virial stress expression such as

σV (x) =
1

vol(Nx)

∑
i∈Nx

σVi , (47)

where Nx is a suitable neighborhood of x, and σVi are the per-atom virial stresses
of the atoms in this neighborhood, which involves the instantaneous particles’
positions qi and linear momenta pi as well as the forces fi acting on them, all of
which appear in the time average at equilibrium:

σVi =

Æ
−
Ç
pi ⊗ pi
mi

+ fi ⊗ qi
å∏

(48)

Expression (47) for the stress tensor in three dimensions can be obtained by taking
the derivative of (4) with respect to the state variable F [55]. We choose the set
A,j to be the neighborhood Nrj of x = rj. This neighborhood spans the linearly
transformed reference segment domain ϕj(C × Ij), ϕj = χj ◦ Φ, resulting in a
volume of R2

csπ ·∆S · detFj. Combining this with (46), we arrive at

nj =
1

∆S · detFj

∑
i∈A0,j

σVi · d3. (49)

This gives us the first of two required generalized stress measures. The other is
the moment acting on a cross section,

m(S) =
∫
C
(ϕ(ζ, S)− r(S))× σ(ζ, S)d3(S) dζ (50)

=
∫
C
ζαdα(S)× σ(ζ, S)d3(S) dζ (51)

= dα(S)×
ï∫
C
ζασ(ζ, S) dζ

ò
d3(S). (52)

To evaluate the integral in brackets, we partition the cross section into an over-
lapping grid of Nh × Nh smaller squares C(a,b), each of side length ∆ζ and with
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midpoint ζ(a,b):

∫
C
ζασ(ζ, S) dζ =

Nh/2−1∑
a=−Nh/2

Nh/2−1∑
b=−Nh/2

∫
C(a,b)

ζασ(ζ, S) dζ (53)

.
= (∆ζ)2

Nh/2−1∑
a=−Nh/2

Nh/2−1∑
b=−Nh/2

ζα(a,b)σ
V
Ä
ζ(a,b), S

ä
=: mj (54)

In subsequent computations, we chose Nh = 20. Using (47) again, we evaluate
σV
Ä
ζ(a,b), S

ä
for a now smaller neighborhood CV(a,b) × Ij, where CV(a,b) is a possibly

different portion of the cross section used in the stress calculation:

σV
Ä
ζ(a,b), S

ä
=

1

detFj · area
Ä
CV(a,b)

ä
·∆S

∑
i|Qi∈Φ

Ä
CV
(a,b)
×Ij
äσVi (55)

Finally, using (19), we obtain the corresponding material quantities

Nj := ΛT
j nj, Mj := ΛT

j mj. (56)

This and the preceding section provide the means that are necessary to bring in
accordance the various quantities calculated for an equilibrated, deformed state of
the atomistic beam with an assumed coinciding continuum beam. For the latter we
can hence determine the local strains and stresses within each arc length segment
Ij.

3.6 Fitting of the energy density

We now must fit the energy density function, for which we make the quadratic
ansatz

ψ(Γ,Ω) =
1

2
Γ ·CNΓ +

1

2
Ω ·CMΩ,

CN = diag(GA1, GA2, EA), (57)

CM = diag(EI1, EI2, GJ), (58)

where CN contains shear stiffnesses and axial stiffness and CM contains bending
stiffnesses and torsional stiffness. We use the term “stiffness” for mere material-
specific properties such as EA; in a different context it could in addition be divided
by a geometric quantity such as the beam length. The resulting generalized stresses
then have the form

N(Γ,Ω) = ∂Γψ(Γ,Ω) = CNΓ, (59a)

M(Γ,Ω) = ∂Ωψ(Γ,Ω) = CMΩ. (59b)
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Though simple, this completely uncoupled choice for the stress-strain relationship
has proven very useful and is employed throughout the literature [40]. Of course,
more elaborate functional forms can be used without affecting the essential fitting
procedure. For general materials, however, about which we have no prior infor-
mation on additional deformation modes, a quadratic energy function typically is
a suitable guess. Even for large beam deflections, the local stress-strain relation-
ship can usually be well approximated as linear. If additional knowledge on the
material at hand is available and a suitably adapted energy function is known, it
can be fitted in the same manner. In these cases, however, new VDEs should be
introduced to trigger the additional modes, as in section 3.3.

The procedures described in sections 3.4 and 3.5, yield material stress-strain
quadruples

(
Γ

(k)
j ,Ω

(k)
j ,N

(k)
j ,M

(k)
j

)
for each segment and for a larger set of virtual

deformation experiments (VDE) with index k = 1, . . . , Nvde. If we arrange the six
unknown material properties from (58) as a vector λ ∈ R6 we obtain the following
objective function to fit these unknowns:

g(λ) :=
1

2

Nvde∑
k=1

Nseg∑
j=1

Å ∥∥∥N(k)
j −N(Γ

(k)
j ,Ω

(k)
j )

∥∥∥2
+
∥∥∥M(k)

j −M(Γ
(k)
j ,Ω

(k)
j )

∥∥∥2
ã

(60)

=
1

2

Nvde∑
k=1

Nseg∑
j=1

Å ∥∥∥N(k)
j −CNΓ

(k)
j )

∥∥∥2
+
∥∥∥M(k)

j −CMΩ
(k)
j )

∥∥∥2
ã

(61)

Minimization of g yields the sought material-specific stiffnesses. Since the partial
derivatives of ψ are fully decoupled and since, by construction of the virtual ex-
periments, we expect only one component of (Γ,Ω) to deviate significantly from
zero, it makes sense to fit each parameter λi individually: for example,

g(EA) = g(λ3) =
1

2

∑
k

∑
j

(
N

(k)
j,3 − λ3 Γ

(k)
j,3

)2
(62)

By eliminating the noise in the remaining stress and strain components the value
of the final fitted parameter can usually be stabilized. Here, k runs only over those
VDEs designed to excite the corresponding deformation mode.

4 Numerical results

We now present, as a benchmark, a direct comparison between purely atomistic
and continuum mechanical simulations. We do not distinguish between calibra-
tion and full system; material parameters are determined for the same system
size used for the benchmark calculations. The MD simulations have been per-
formed using LAMMPS [56], while the finite element code for the beam model
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has been implemented based on the libMesh library [57]. Specifically, for a silicon
nanowire and a carbon nanotube we perform Nvde = 30 virtual experiments with
strain components Γi = 0.02, 0.04, . . . , 0.10 and Ωi = 2× 10−4 Å−1, 5× 10−4 Å−1,
8× 10−4 Å−1, 0.001 Å−1, 0.002 Å−1 for i = 1, 2, 3. These choices are representative
as guidelines for the choice of VDEs. The values of Γi and Ωi should be restricted
to the range of deformations that can be represented by the chosen functional
form for the energy density ψ. In the case of (58) this means that the stress-strain
relationship should remain linear. A possibly larger range may be included when
a nonlinear relationship is assumed. By inspection of the input data generated by
the VDEs one can exclude cases that cannot be properly captured by the chosen
functional form.

Furthermore, we usually exclude some beam segments close to the boundary
where atom positions are fixed and computed stresses are not meaningful. We also
note that a simple hyperelastic material model like (58) can only be fitted to a
certain range of deformations, as dictated by the virtual deformation experiments
used, though extensions to overcome this issue could be conceived.

4.1 Contact with a Lennard-Jones wall

An atomistic beam is initially aligned along the z-axis from X3 = 0 to X3 = L.
A small set ∂A0 of atoms near the origin is kept fixed. We then introduce a half-
space E− of Lennard-Jones (LJ) particles separated from the beam by a plane E
with outer unit normal ν ∈ R3 and distance −d from the origin. The half-space
containing the LJ particles is then given by

E− =
¶
y ∈ R3 | y · ν − d < 0

©
, (63)

while the beam and origin are located in the complementary half-space

E+ =
¶
y ∈ R3 | y · ν − d > 0

©
. (64)

The distance dE(y) = y·ν−d partitions R3 into E, E−, and E+. Although infinite,
E− can be seen as a good approximation to a large rigid body that interacts with
the beam via a LJ potential. As it is not itself deformed, E− is is not an explicit
part of our model; only its interactions with the beam are. The wall can be
pushed towards the beam, which is still fixed at one end, as shown in fig. 5. Thus
d increases over multiple displacement steps. As a result, the beam undergoes a
substantial deflection away from the wall but always remains in E+. The potential
energy of the entire wall interacting with a particle at position x ∈ E+ is an infinite
sum over all pairwise LJ interactions, which have the form:

φ(r) = 4ε̃

ñÅσ
r

ã12

−
Åσ
r

ã6
ô

(65)
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Figure 5: Illustration of a geometrically exact beam, 1. in its undeformed reference
configuration and 2. after coming into contact with a rigid Lennard-Jones wall.

Similar to [58], we approximate this summation through an integral over a contin-
uum of LJ sites with constant particle density β̂w,

πw(x) =
∫
E−

β̂w · φ(‖y − x‖) dy (66)

=
2

3
πβ̂wε̃σ

3︸ ︷︷ ︸
=:ε

[
2

15

Ç
σ

dE(x)

å9

−
Ç

σ

dE(x)

å3
]

= φ93( dE(x) ), (67)

resulting in the so-called Lennard Jones 9-3 potential

φ93(dE) = ε

[
2

15

Ç
σ

dE

å9

−
Ç
σ

dE

å3
]
, (68)

which is a function only of the distance dE of the particle from plane E. These
interactions can be easily modeled using LAMMPS.

We now turn to the continuum framework and determine the total interaction
energy between this wall and a deformed configuration ϕ of the geometrically
exact beam. To this end, we introduce the contact energy, which weights all
particle interactions with the wall by the current particle density of the beam,
β̂(x):

Πc[ϕ] =
∫
B
β̂(x)πw(x) dx =

∫
C

∫
I
β̂(ϕ(ζ, S))πw(ϕ(ζ, S)) |detDϕ(ζ, S)| dζdS

(69)

We define the transformed particle density

β(ζ, S) := β̂(ϕ(ζ, S)) |detDϕ(ζ, S)| = β̂0(Φ(ζ, S)) (70)

and make the simplifying assumption for the reference particle density β̂0(X) that
∂Xα β̂0 ≡ 0, α = 1, 2, yielding β = β(S) and hence

Πc[ϕ] =
∫
I
β(S)

∫
C
πw(r(S) + ζαdα(S)) dζ dS. (71)
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We can evaluate the inner integral of (71) analytically at a specific arc-length
position S:∫
C
πw(r + ζαdα) dζ =

2

15
εσ9

∫
C
dE(r + ζαdα)−9 dζ − εσ3

∫
C
dE(r + ζαdα)−3 dζ

(72)

=
2

15
εσ9 · J9(dE(r),ν ·Qd1, Rcs)− εσ3 · J3(dE(r),ν ·Qd1, Rcs),

(73)

for an appropriately chosen3 orthogonal transformation Q and

J9(a, b, R) =
R2π

64
· 5b6R6 + 120a2b4R4 + 240a4b2R2 + 64a6

(a−Rb)15/2(a+Rb)15/2
, (74)

J3(a, b, R) =
R2π

(a−Rb)3/2(a+Rb)3/2
. (75)

The details of this calculation are deferred to B. A similar procedure might also
be feasible to find a closed-form expression for the LJ interaction between two
circular cross sections, which could be used to simplify the computation of the
contact energy between two beams. If the assumption β(ζ, S) ≡ β(S) is violated,
the relationship (71) can be generalized straight-forwardly if the particle density
β is piecewise constant within a number Nann of concentric annuli of radii 0 =
Rcs,0 < Rcs,1 < · · · < Rcs,Nann = Rcs. In this case, the integral over a single annulus
is obtained by subtracting the expression for a disk with radius Rcs,i−1 from that
for Rcs,i. On the other hand, the continuum problem that we want to solve is to
minimize the energy functional

Π[ϕ] := Πint[ϕ] + Πc[ϕ], Πint[ϕ] :=
∫
I
ψ
Ä
Γ[ϕ](S),Ω[ϕ](S)

ä
dS, (76)

subject to fixed boundary conditions at S = 0. The relevant thermodynamic
potential for isothermal conditions is the Helmholtz free energy, whose internal
part is given by Πint. Πc actually denotes only the potential energy of the wall–
beam interaction, since it seems unfeasible to devise a proper model for the free
energy of the interaction with a wall (given in terms of ν and d). We therefore
consider Πc as a suitable approximation for the latter.

We now carry out a fully atomistic simulation of a beam interacting with an
approaching LJ wall. At equilibrium, we extract certain quantities of interest
and compare them to their continuum equivalents obtained from finite element

3See B. The symbol Q for the orthogonal transformation is not to be confused with the atomic
positions.
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(a) (b)

Figure 6: Snapshot of (a) an undeformed silicon nanowire and (b) an undeformed
carbon nanotube.

calculations of an analogous quasi-static process. In this way, we can assess the
accuracy with which the surrogate model reproduces the “exact” MD values. We
study two such quantities here. First, we consider the total force of the wall exerted
on the beam. This is expressed for the atomistic case as the time-average

fat =

〈
−ν

N∑
i=1

φ′93(dE(qi))

〉
, (77)

while the continuum version can be obtained by differentiating Πc:

fcont = −ν ε
∫
I
β
ï 2

15
σ9·∂aJ9(dE(r),ν ·Qd1, Rcs)−σ3·∂aJ3(dE(r),ν ·Qd1, Rcs)

ò
dS,

(78)
where r = r(S), Q = Q(S) and d1 = d1(S) in the integrand all depend on S.
As expected, the forces are in both cases directed along the wall normal vector ν.
Secondly, we compute the eccentricity, or the deflection of the central line’s right-
hand end r(L) from the z-axis, on which it lies in the reference configuration:√

r1(L)2 + r2(L)2. (79)

4.2 Results for Silicon Nanowires

The first system of interest are so-called nanowires, which are crystalline metallic
or metalloid, slender objects with a small radius compared to their length (figure
6a). Nanowires have numerous potential applications, such as nano-electronics,
nanosensors and photonics [1]. The numerical studies in this work are carried
out for Si nanowires, where the interatomic interactions are described through
a Stillinger-Weber potential [59]. The mechanical behavior of silicon nanowires
(SiNW) has frequently been studied using both atomistic simulations [60] and
experiments [61, 62].

The nanowire systems studied here have lengths between Lg = 50a and Lg =
150a, where a = 5.431 Å is the lattice constant of Si. Lg denotes the “geometric”
length of the crystalline starting configuration used in the MD simulations. Due
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to thermal fluctuations, the atomistic reference configuration A0 typically deviates
from this perfectly straight shape, leading to different effective lengths L. Three
cross sections were chosen as circular (001) surfaces with atoms located within
different radii of Rg = 2.5a, Rg = 3.5a and Rg = 4.5a, which are also merely
geometric. Physically, though, the atoms are not point particles, but have a finite
extent; for example, the van der Waals radius of Si is Rvdw = 2.1 Å. Therefore, the
effective cross-sectional radius is Rcs = Rg +Rvdw. The Lennard-Jones parameters
of the wall interaction were set to ε = 600 Å3 bar and σ = 3.5 Å, and the wall was

tilted against the z-axis, ν =
î
0, 0.3,−

√
0.91

óT
.

The identified mass-dependent properties for systems of different radius and
length are summarized in table 1. The temperature was always T = 300 K. We see
that the inertia is distributed symmetrically, as expected. The only exception is the
very slender nanowire (Rg = 2.5a, Lg = 150a), where the thermal vibrations lead
to significant deviations in the atomic mean positions from a canonical reference
configuration even without any deforming boundary conditions applied, resulting
in a seemingly asymmetric mass distribution. Averaging the atom positions over
a longer time span may attenuate this issue. The material parameters determined
for the constitutive law (58) are presented in table 2.

Rg Lg L [Å] M0 [Å−1 u] M11
2 [Å u] M22

2 [Å u]
2.5a 50a 266 853 40 300 40 700
2.5a 150a 798 851 52 000 41 300
3.5a 60a 327 1580 141 000 141 000
3.5a 150a 814 1580 141 000 141 000
4.5a 150a 813 2640 394 000 394 000

Table 1: Silicon nanowires: The identified effective length L, mass density M0 and
cross section inertia Mαα

2 , for various geometric dimensions Rg, Lg. Remark: 1 u
= 1.66× 10−27 kg.

Rg Lg GA1 [Å2bar] GA2 [Å2bar] EA [Å2bar] EI1 [Å4bar] EI2 [Å4bar] GJ [Å4bar]
2.5a 50a 2.37× 108 2.29× 108 4.09× 108 1.86× 1010 1.87× 1010 2.00× 1010

2.5a 150a 1.75× 108 1.68× 108 3.84× 108 1.67× 1010 1.83× 1010 1.80× 1010

3.5a 60a 4.67× 108 4.66× 108 9.31× 108 7.60× 1010 7.76× 1010 9.02× 1010

3.5a 150a 4.70× 108 4.62× 108 9.67× 108 6.86× 1010 7.39× 1010 8.84× 1010

4.5a 150a 8.34× 108 8.27× 108 1.58× 109 2.25× 1011 2.02× 1011 2.61× 1011

Table 2: Silicon nanowires: The identified material parameters for the constitutive
law (58), for various geometric dimensions Rg, Lg. Remark: 1 Å2 bar = 10−15 N,
1 Å4 bar = 10−35 Nm2.
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pd GA1 [Å2bar] GA2 [Å2bar] EA [Å2bar] EI1 [Å4bar] EI2 [Å4bar] GJ [Å4bar]
0% 4.67× 108 4.66× 108 9.31× 108 7.60× 1010 7.76× 1010 9.02× 1010

1% 4.75× 108 4.64× 108 8.50× 108 6.69× 1010 7.30× 1010 7.99× 1010

2% 4.25× 108 4.23× 108 7.55× 108 6.23× 1010 5.72× 1010 7.12× 1010

Table 3: Silicon nanowires: The identified material parameters for the constitutive
law (58) for a system with Lg = 60a, Rg = 3.5a and vacancy percentages pd of
removed atoms.

Dividing the axial stiffness EA by the cross-sectional area A = R2
csπ gives the

axial Young’s modulus of the beam. For example, for beams of length Lg = 150a
and radii Rg = 2.5a, 3.5a, and 4.5a we find E = 49.8 GPa, 69.1 GPa, and 71.3 GPa,
respectively. These values are significantly smaller than Young’s modulus for bulk
Si, which is 151.4 GPa for the Stillinger-Weber potential. This reveals a well-known
size effect in the mechanical properties of nanowires, caused by non-negligible
surface effects as the surface-to-volume ratio becomes large [63–66]. Thus, without
a rule for scaling the material properties between different radii (and possibly
different cross-sectional shape), one has to repeat the parameter identification
procedure for each type of cross section.

The structures considered so far were constructed in a perfectly defect-free
manner. In reality, though, there is usually a certain amount of defects present
in the system. We can take this into account by identifying material parameters
that reflect a given statistical distribution of such defects. To this end, one can for
example build an initial configuration that contains vacancies, impurities etc. in a
prescribed amount. The size of the calibration system then needs to be chosen large
enough such that it constitutes a representative sample of defect distribution. Like
before, one has to keep in mind that the continuum material description cannot
capture plastic events. As the latter may be triggered more easily in the presence
of defects, the material parameters determined may only be valid for relatively
small local strains.4 Table 3 shows the material parameters found for again a
SiNW at T = 300 K with geometric dimensions Lg = 60a and Rg = 3.5a, but
this time with vacancy ratios pd = 0%, 1% and 2%. That is, a percentage pd of
atoms are randomly removed from the perfect nanobeam, followed by the usual
conducting of the VDEs. The table demonstrates how the structural weakening
can be quantified as more vacancies lead to a consistent decrease in the stiffness
values.

Figure 7 shows the y- and z-components of the force exerted by the LJ wall
onto the beam over a displacement range of 35 Å, where a displacement of zero

4In principle, within a concurrent multiscale method, one could alternatively also use a two-
level approach that solves a microscale problem around each point defect [67].
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corresponds to the wall having moved to the initial location of the free end of the
beam’s central line; an increasing value means that the wall has moved beyond this
point to cause more deflection. Each of the eighty displacement steps consisted of
0.4 ns of moving the wall by a small increment, another 0.4 ns of equilibration and
0.4 ns of sampling. The shift between the continuum and atomistic curve is chosen
to yield good visual agreement; this implicitly determines the effective reach of the
continuum beam within this contact problem. Error bars in the plot indicate the
standard deviation of ten repeated MD simulations, each performed with a varying
perturbation in the initial atomic velocities. We see that the trends of the forces
are well captured by the continuum model, where they remain within one standard
deviation from the atomistic mean values. However, we notice that the continuum
forces contain a mild level of consistent underprediction with respect to the MD
values. The error bars also show the fluctuation in the time-averaged atomistic
forces increases as the wall approaches the beam. This can be explained by the
increasing number of beam atoms that interact with the wall, as each particle
introduces additional thermal fluctuations to the force (77). Also note that due to
(77), (78) the two graphs are related to each other and differ only by the scaling
of different components of ν. An enlarged image detail of the adhesive regime of
the forces in y-direction is provided in figure 8.

The eccentricity, or the deflection of the beam’s end from the z-axis, is shown
in figure 9 over a displacement range of 70 Å. We still see qualitiative agreement,
though the deflection is overestimated by the continuum model. The error bars
are omitted since there is little variation in the atomistic data. To extract the
beam’s geometry in each displacement step, we proceed as in section 3.4. For the
same displacement range, the corresponding forces are shown in figure 10.

4.3 Results for Carbon Nanotubes

As a second test case, we study single-walled carbon nanotubes (CNT) as shown
in figure 6b. Due to their remarkable properties and their potential applications,
CNTs have been thoroughly investigated in recent decades both experimentally
[68–70] and via modeling. Mechanical properties such as the elastic modulus and
bending stiffness can be found from atomistic models [71]. Significant effort has
been expended to represent CNTs through specialized continuum models such
as Euler-Bernoulli [72, 73] and Timoshenko [74, 75] beams, and in particular to
study buckling behavior [76–78]. Moreover, [79] uses a nonlocal Euler-Bernoulli
beam and a cylindrical shell description to predict the critical buckling strains
of nanotubes. Finite-temperature simulations of a continuum based on the local
harmonic approximation have also been performed [22].

Gould and Burton [80] and Fang et al. [18] have also successfully modelled
CNTs by extending the classical Cosserat theory to allow cross-sectional deforma-
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Figure 7: Silicon nanowire (Rcs = 3.5a, Lg = 60a): Forces exerted on the beam
structure by a moving Lennard-Jones wall, which gets closer at increasing dis-
placements. Error bars indicate the standard deviation. Remark: 1 eV Å−1 =
1.6022 nN.
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Figure 8: Silicon nanowire (Rcs =
3.5a, Lg = 60a): Enlargement of the
forces from figure 7a.
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Figure 9: Silicon nanowire (Rcs =
3.5a, Lg = 60a): Deflection of the
beam’s free end from the z-axis over
an increased displacement range of
70 Å.
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/Å

]

 

 

Finite element solution

Molecular dynamics solution

(b)

Figure 10: Silicon nanowire (Rcs = 3.5a, Lg = 60a): Forces exerted on the beam
structure by a moving Lennard-Jones wall, over a larger displacement range of
70 Å.

tions of tubular systems. The work of Chandraseker et al. [17] is quite similar to
ours in that CNTs are deformed by imposing boundary conditions on the outer-
most atoms, then minimizing the structure’s energy and finally using the atomic
positions to determine the strain measures to fit an energy density function. The
energies are based on DFT calculations and therefore neglect thermal effects.

Due to their tubular structure, another natural way to model CNTs as continua
is to take its shell- or sheet-like character directly into account [81–83]. Arroyo and
Belytschko [12] have developed the exponential Cauchy-Born rule for membrane
structures and apply it in finite element simulations of single- and multi-walled
CNTs, also in problems involving buckling. Zhang et al. [84] use Cosserat surfaces
and an especially adapted variant of the CBR to determine the material behavior.
Zhang et al. [85] and Hollerer [86] have also used a coupled atomistic-continuum
approach.

Our atomistic simulations are based on a Tersoff potential for the carbon bonds
[87]. Outside of the Tersoff cutoff of 2.1 Å, van der Waals interactions are added
through an additional LJ potential with εCC = 2.39 meV, σCC = 3.41 Å [88, 89]
and a cutoff radius of 2.5σCC. The geometry of a CNT is specified by a pair of
indices (n,m). Suitable initial configurations can be generated with software like
VMD [90] or Nanocap [91]. Here we consider (n,m) = (10, 10), (15, 15), (20, 20)
and (25, 25), resulting in so-called armchair configurations, with a geometric radius
of

Rg =
c

2π

√
m2 +mn+ n2 (c = 2.46 Å). (80)
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[92]. To this, the van der Waals radius Rvdw = 1.7 Å for C is added to obtain Rcs.
The effective length of the systems was about 380 Å for the three smaller cross
sections and 492.67 Å for the n = m = 25 case. Furthermore, the temperature was
again kept at T = 300 K and the LJ parameters of the wall interaction were set to
ε = 10 000 Å3 bar, σ = 2.5 Å; ν remains as above, too.

For the four systems, we present the computed mass-related quantities in table
4, and the corresponding parameters for the constitutive law in table 5. For the
CNTs with n = m = 10, 15, 20, 25 we find the following axial Young’s moduli:
E = 643 GPa, 543 GPa, 426 GPa and 377 GPa. These quantities agree with data
reported in the literature [3, 93–95], where a range between 300 GPa and 1 TPa is
typically found. The axial shear modulus can be found by dividing the torsional
stiffness GJ by the polar moment of area J = R4

csπ/2. We obtain values of G =
578 GPa, 501 GPa, 405 GPa and 364 GPa, respectively, which is also consistent
with other simulations [96, 97].

We can also have another look at how the material behavior changes under
variations in the temperature. For the (20, 20) system, the values corresponding
to T = 300 K, 450 K, 600 K and 750 K are shown in table 6. Additional material
parameters have also been identified for the case that a certain vacancy percentage
pd is introduced. Results for the (15, 15) system with vacancies are listed in table 7.
Like before in the SiNW setting, a monotonous decrease of all stiffnesses can be
observed.

In figure 11, we see the y- and z-components of forces exerted on the (15, 15)
CNT by the LJ wall as it is displaced 40.0 Å. Again we observe good agreement
between the atomistic and continuum mechanical surrogate models, including in
the attractive regime, but this suddenly changes if the wall is moved further: in
figure 12, we see the carbon nanotube begin to buckle. This buckling cannot
be captured by our current finite element model. This phenomenon is also ac-
companied by large deformations of the nanotube’s cross section, which are not
accounted for in the current formulation of the continuous beam. These structural
changes in the cross section likely explain the apparent softening of the nanotube.
Thus the atomistic modeling can be used to detect the range of applicability of
the continuum model for a given system. Finally, in figure 13, we show the plot of
the eccentricity of the CNT, which is also captured quite well.

5 Conclusion and Outlook

We have demonstrated how the procedure summarized in figure 1 can be used to
obtain a surrogate model for atomistic beam structures. To this end, the theory
of geometrically exact beams [9] was chosen as a candidate for the description of
the substituting continuum mechanical system. To assess the suitability of the
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Figure 11: Carbon nanotube (n = m = 15, L = 381.9 Å): Forces exerted on the
beam structure by a moving Lennard-Jones wall. Error bars indicate the standard
deviation.

Figure 12: Carbon nanotube (n = m = 15, L = 381.9 Å): Buckling occurs for large
displacements of the wall. Exemplary stages of the deformation are also shown.

29



n = m L [Å] M0 [Å−1 u] M11
2 [Å u] M22

2 [Å u]
10 383 180 5000 4930
15 382 269 21 900 16 700
20 383 359 39 600 39 000
25 493 449 77 000 76 200

Table 4: Carbon nanotubes: The identified effective length L, mass density M0

and cross section inertia Mαα
2 , for four systems with CNT indices (n,m).

n = m GA1 [Å2bar] GA2 [Å2bar] EA [Å2bar] EI1 [Å4bar] EI2 [Å4bar] GJ [Å4bar]
10 4.79× 108 4.76× 108 1.45× 109 4.86× 1010 4.92× 1010 4.70× 1010

15 7.09× 108 7.33× 108 2.41× 109 1.66× 1011 1.67× 1011 1.56× 1011

20 8.88× 108 8.86× 108 3.12× 109 3.67× 1011 3.75× 1011 3.45× 1011

25 1.08× 109 1.10× 109 4.12× 109 6.92× 1011 6.99× 1011 6.93× 1011

Table 5: Carbon nanotubes: The identified material parameters for the constitu-
tive law (58), for four systems with CNT indices (n,m).

method, we looked at a Si nanowire and at a CNT, respectively, approaching
an infinite, rigid wall. The forces exerted by this wall onto the beam contain
uncertainties when determined using MD simulations. The average of these values,
however, is matched by the continuum model to a degree that seems acceptable
in the considered applications. Geometric agreement was examined based on the
eccentricity of the beam and we saw that the main features of the atomistic curves
can also be captured well. For larger deflections, however, an increasing systematic
discrepancy became apparent. As one of the reasons for the latter, we identified
changes in the cross-sectional shape that cannot be captured with the kinematic
description of the geometrically exact beam. Hence an obvious future improvement
would be to use an extended beam theory, some of which have been mentioned in
sec. 3.1. For example, Luongo and Zulli [39] introduce additional strain variables
α, β to capture cross-sectional deformations such as warping or ovalization. These

T [K] GA1 [Å2bar] GA2 [Å2bar] EA [Å2bar] EI1 [Å4bar] EI2 [Å4bar] GJ [Å4bar]
300 8.88× 108 8.86× 108 3.12× 109 3.67× 1011 3.75× 1011 3.45× 1011

450 8.89× 108 8.86× 108 2.54× 109 3.70× 1011 3.69× 1011 3.22× 1011

600 8.65× 108 8.73× 108 2.53× 109 3.60× 1011 3.65× 1011 3.29× 1011

750 8.46× 108 8.57× 108 2.50× 109 3.56× 1011 3.35× 1011 3.18× 1011

Table 6: Carbon nanotubes: The identified material parameters for the constitu-
tive law (58) for systems with n = m = 15 and for varying temperature T .
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pd GA1 [Å2bar] GA2 [Å2bar] EA [Å2bar] EI1 [Å4bar] EI2 [Å4bar] GJ [Å4bar]
0% 7.09× 108 7.33× 108 2.41× 109 1.66× 1011 1.67× 1011 1.56× 1011

1% 6.03× 108 5.87× 108 1.82× 109 1.58× 1011 1.59× 1011 1.40× 1011

2% 5.55× 108 5.27× 108 1.76× 109 1.42× 1011 1.44× 1011 1.25× 1011

Table 7: Carbon nanotubes: The identified material parameters for the constitu-
tive law (58) for systems with n = m = 15 and vacancy percentages pd of removed
atoms.
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Figure 13: Carbon nanotube (n = m = 15, L = 381.9 Å): Eccentricity of the
structure at certain wall displacement levels.

31



satisfy an additional balance equation, typically of the form B′−D+ q = 0, where
q is a distortional force and D = ∂αψ and B = ∂βψ are the new stresses associated
with the distortion. To fit the energy density ψ, the general method described in
this work would have to be supplemented by appropriate expressions that relate
the atomistic degrees of freedom q,p to the macroscopic quantities α, β, D and
B based on phase averages.

Another plausible source of the mismatch could be that the linear constitutive
law used does not describe the system well over the whole range of deformations.
More complex functional forms might therefore be considered [18], or one could
adapt an arbitrary three-dimensional constitutive law to the reduced one-dimen-
sional case. In any case, possible rate effects leading to non-relaxed stresses in the
VDE at calibration should be avoided by granting sufficiently long equilibration
times. The material laws determined in this work could also be applied to adhesion
and debonding problems involving thin films [98]. A potential future extension of
the present work is posed by coupling the mechanical conservation laws to the
general energy balance:

P : Ḟ + ρ0r0 −DivH = ρ0ė0, (81)

with referential heat source distribution r0, heat flux vector H and internal energy
density e0. One can then assume, for example, that the latter two quantities
depend on instantaneous strain and temperature,

H = H(Γ,Ω, T ), e0 = e0(Γ,Ω, T ). (82)

In the simplest case, the internal energy is a linear function of temperature:
e0 = e0(T ) = cvT + const, where cv is the specific heat capacity. It was al-
ready shown how the Helmholtz free energy can be determined in a temperature-
dependent fashion, ψ = ψ(Γ,Ω, T ). However, a new procedure would have to be
conceived to obtain suitable continuum mechanical constitutive laws for H and
e0 from atomistic simulations. Numerous studies have attempted to address this
problem for three-dimensional bulk systems Fish et al. [27], Admal and Tadmor
[28], Lehoucq and Von Lilienfeld [99], Hardy [100], Wagner et al. [101]. One should
keep in mind, though, that capturing electron-based heat transfer requires suitable
modification of classical MD [102].

On the other hand, the computational costs of the FE simulations are much less
compared to the fully atomistic ones. For example, the MD simulation of the beam-
wall contact for carbon nanotube (n = m = 15) consisting of N = 8580 particles
takes about 100 h when running on 64 cores in parallel, due to the relatively
long simulation time of 98 ns. Compared with this, solving a series of 500 quasi-
static continuum problems using 200 finite elements can be done on a conventional
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workstation computer in just about one hour, though the one-time calibration
phase is not included in this.

We would thus expect large savings in computation time for more complex
systems. Some interesting candidates for the near future could for example include
multi-walled carbon nanotubes (MWCNT) or larger organic materials like bundles
of cellulose strands.
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A Appendix: Analytical expressions for homo-

geneously deformed beams

To evaluate the integral expression in (27),

r(S) = rin + Λin

ñ∫ S

s=0
exp
Ä
s · “Ω0

ä
ds

ô
· (Γ0 +E3). (83)

we first write Ω0 in terms of its polar angle θ and azimuth angle ψ:

Ω0 = ‖Ω0‖ ·

sin θ cosψ
sin θ sinψ

cos θ

. (84)

We then consider the diagonalization “Ω0 = V ·D · V ∗ with

D = diag
Ä
i‖Ω0‖,−i‖Ω0‖, 0

ä
, V =

î
a+ ib,a− ib,Ω0/‖Ω0‖

ó
, (85)

where we introduce

a =
1√
2

− cos θ cosψ
− cos θ sinψ

sin θ

, b =
1√
2

− sinψ
cosψ

0

, (86)

and V ∗ is the complex conjugate of V . From this we obtain∫ S

s=0
exp
Ä
s · “Ω0

ä
ds = V ·

ñ∫ S

s=0
exp(s ·D) ds

ô
· V ∗ (87)

= V · diag

Ç
exp(iS‖Ω0‖)− 1

i‖Ω0‖
,
1− exp(iS‖Ω0‖)

i‖Ω0‖
, S

å
· V ∗,

(88)
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which can be used to obtain the central line r(S) with respect to basis vectors
ei for any homogeneous strain pair (Γ0,Ω0), as is apparent from (83). We are in
particular interested in the following resulting configurations for pure strains, with
rin = 0, Λin = I chosen at the beam end S = 0.

1. Shear in x-direction, Γ0 = [Γ1, 0, 0], Ω0 = [0, 0, 0]:

r(S) =

Γ1

0
1

 · S, Λ(S) ≡ I (89)

2. Shear in y-direction, Γ0 = [0,Γ2, 0], Ω0 = [0, 0, 0]:

r(S) =

 0
Γ2

1

 · S, Λ(S) ≡ I (90)

3. Axial elongation or shortening, Γ0 = [0, 0,Γ3], Ω0 = [0, 0, 0]:

r(S) =

 0
0

Γ3 + 1

 · S, Λ(S) ≡ I (91)

4. Bending about x-axis, Γ0 = [0, 0, 0], Ω0 = [Ω1, 0, 0]:

r(S) =

 0
1

Ω1
(cos(S · Ω1)− 1)

1
Ω1

sin(S · Ω1)

, Λ(S) =

1 0 0
0 cos(S · Ω1) − sin(S · Ω1)
0 sin(S · Ω1) cos(S · Ω1)


(92)

5. Bending about y-axis, Γ0 = [0, 0, 0], Ω0 = [0,Ω2, 0]:

r(S) =


1

Ω2
(cos(S · Ω2)− 1)

0
1

Ω2
sin(S · Ω2)

, Λ(S) =

 cos(S · Ω2) 0 sin(S · Ω2)
0 1 0

− sin(S · Ω2) 0 cos(S · Ω2)


(93)

6. Axial torsion, Γ0 = [0, 0, 0], Ω0 = [0, 0,Ω3]:

r(S) =

0
0
S

, Λ(S) =

cos(S · Ω3) − sin(S · Ω3) 0
sin(S · Ω3) cos(S · Ω3) 0

0 0 1

 (94)
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B Appendix: Analytical expressions for Lennard-

Jones interactions of a beam

Suppose that for some mapping f : R3 → R we want to determine the integral∫
C
f(r + ζαdα) dζ (95)

over the disk C = {ζ ∈ R2 | ‖ζ‖ ≤ Rcs}, for fixed values of r, dα. We can rewrite
this as ∫

C
f
Ä
r + ζ̃αd̃α

ä
dζ̃, d̃α := Qdα, (96)

for any proper orthogonal transformation Q that leaves d3 = Qd3 unchanged.
This can be seen by considering the area-preserving transformation

T : C → C, ζα = Tα
Ä
ζ̃
ä

= ζ̃β dα ·Qdβ. (97)

If now f is substituted by dE(·)−3, where dE(y) = y · ν − d is the distance to the
plane E from sec. 4.1, we can write

J3 :=
∫
C
dE(r + ζαdα)−3 dζ =

∫
C
dE
Ä
r + ζ̃αd̃α

ä−3
dζ̃. (98)

If we choose Q such that in addition it holds d̃2 · ν = Qd2 · ν = 0 we have

dE
Ä
r + ζ̃αd̃α

ä
= r · ν − d︸ ︷︷ ︸

=:a=dE(r)

+ζ̃1 Qd1 · ν︸ ︷︷ ︸
=:b

= a+ ζ̃1b. (99)

Based on this, and introducing l(t) :=
»
R2

cs − t2, the integral (98) over C becomes

∫
C

Ä
a+ ζ̃1b

ä−3
dζ̃ =

Rcs∫
ζ̃1=−Rcs

l(ζ̃1)∫
ζ̃2=−l(ζ̃1)

Ä
a+ ζ̃1b

ä−3
dζ̃1dζ̃2 (100)

=

Rcs∫
ζ̃1=−Rcs

Ä
a+ ζ̃1b

ä−3 · 2l
Ä
ζ̃1
ä
dζ̃1 (101)

=
R2

cs π

(a−Rcs b)
3
2 (a+Rcs b)

3
2

= J3(a, b, Rcs). (102)

In the context of the Lennard-Jones wall interaction, we can note that dE
Ä
r + ζ̃αd̃α

ä
>

0 for all ζ̃ ∈ C since the beam remains in E+. Hence we have

0 < dE
Ä
r + ζ̃αd̃α

ä
= dE

Ä
r + ζ̃1d̃1

ä
= a+ ζ̃1 b, ∀ζ̃ =

Ä
ζ̃1, ζ̃2

ä
∈ C. (103)
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If we insert the extremal values ζ̃1 = ±Rcs this yields the inequalities a+Rcs b > 0
and a− Rcs b > 0. This shows that no singularities appear in the denominator of
J3(a, b, R).

One possibility (of two) for a rotation Q that satisfies the aforementioned
conditions is given explicitly by

Q =

ñ
1

sin γ
(d3 × ν)× d3

ô
⊗ d1 +

ñ
1

sin γ
d3 × ν

ô
⊗ d2 + d3 ⊗ d3, (104)

with γ denoting the angle between d3 and ν. It then becomes obvious that b =
Qd1 · ν = sin γ. And as we already know that a = dE(r) is the distance of the
disk center to the wall, we see that

J3 = J3(a, b, Rcs) = J3(dE(r), sin γ,Rcs) (105)

is really just a function of the disk center’s distance, the angle between disk and
wall normals and the disk radius. Lastly, analogously to J3, we can also obtain

J9(a, b, Rcs) :=
∫
C
dE(r + ζαdα)−9 dζ =

R2
cs π

64
·5b

6R6
cs + 120a2b4R4

cs + 240a4b2R2
cs + 64a6

(a−Rcs b)
15/2(a+Rcs b)

15/2
.

(106)
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