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Abstract

This paper presents a general model description for the contact of surface tension driven sys-
tems. The example system of a liquid droplet in contact with a deformable solid substrate is
considered. This can be easily modified to consider two liquids or two solids in contact. The
surface kinematics, essential to the modeling of surface tension, is described here in curvilinear
coordinates. In particular modeling focus are the contact conditions at the contact boundary,
where a wetting ridge may develop. It is shown that in the case of quasi-statics and hyperelastic-
ity the governing equations can be derived from a global potential that accounts for contact as
well as the energy storage within the bulk and surface domains. Altogether, 21 Euler-Lagrange
equation are derived in this manner. Apart from these strong form equations, the governing
weak form as well as its complete linearization, which are required for computational methods,
are also discussed. It is shown that the governing equations can be further simplified into a
reduced set of equations that are then suitable for an efficient computational implementation
of the system. Computational solution methods are not discussed here, as the present focus is
on the theory and its implications. A few remarks on analytical solutions, as well as a simple
computational example, are given nonetheless. An auxiliary benefit of this work is a summary
of the variation and linearization of the kinematical and constitutive equations of the system.

Keywords: contact constraints, curvilinear coordinates, Euler-Lagrange equations, membrane
elasticity, variational methods, wetting ridge.

1 Introduction

Surface tension driven systems can play a very important role at small length scales, where
surface effects can become dominant. Since all substances – liquids, solids and gases – have
surfaces at boundaries, they can all be affected by surface tension. Sometimes there is only a
surface (with negligible thickness), as in the case of membranes and thin films, and consequently
such systems may only be driven by surface tension. An illustrative example is a liquid droplet
sitting on a soft substrate. The droplet, but also the substrate, may be governed by surface
tension. Further, the surface tension will also govern the contact behavior between droplet and
substrate. This setting is relevant to the wetting-, hydrophobicity- and self-cleaning-properties
of solid surfaces. Examining the influence of the surface tension on solids, liquids and their
contact behavior, is therefore an important issue, especially at small length scales. Here in this
treatment, we are interested in assembling a very general three-dimensional model description
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in the context of non-linear continuum mechanics that accounts for the surface tension of two
bounded bodies in contact. The problem is characterized by the coupling of five fields: the
deformation of the two bodies and their three interfaces. Contact constraints are introduced
to formulate the coupling. The coupled system can in general be studied by computational
methods. This is not the focus here. This paper rather serves as a rigorous foundation for such
computations as well as for later theoretical extensions. Furthermore, it gives an overview of
the governing equations formulated in strong, weak and linearized form. It is demonstrated
that for quasi-statics and hyperelasticity, these can be derived from a global potential. It is
further shown how the system can be simplified, without losing essential information.

Here, the surface tension is formulated in the framework of the shell theory of Steigmann
[1], disregarding the curvature elasticity inherent to shells. So we only consider an in-plane
stretch-induced membrane stress state within the interfaces. Bending-induced stresses, as well
as out-of-plane stresses, are not considered here, even though they may also be relevant even for
fluid films [2]. The contact treatment considered here is based on the classical large-deformation
approaches reported by Laursen [3] and Wriggers [4]. In the context of (the aforementioned)
membranes, contact and adhesion has been studied in the work of Baesu et al. [5], Agrawal
[6] and Sauer et al. [7]. In these studies, however, the specific contact conditions along the
contact line are not included within the formulation, as is a focus here. Further novelties of
this work are: a detailed interpretation of the stress state at the wetting ridge, the derivation
of constrained membrane elasticity, the simplification into a reduced model description, and a
stability discussion for constant surface tension (occurring e.g. for liquids). An auxiliary benefit
is the summary of the variation and linearization of the kinematical and constitutive expressions
of the studied system. To the best of our knowledge, this study seems to be the most detailed
work to-date on the contact coupling of surface driven systems.

The remainder of this paper is organized as follows. Sec. 2 introduces the notation and kine-
matical description of the considered system. Sec. 3 then proceeds with deriving the governing
Euler-Lagrange equilibrium equations based on the global potential of the system. Along the
way, the variation of kinematical and constitutive expressions is discussed. The linearization of
the governing equations is then presented in Sec. 4. A particular focus is placed on the reduction
of the model description. Sec. 5 then presents a simple computational example for illustration.
The paper concludes with Sec. 6.

2 Problem setup

This section discusses the general notation and kinematical description of the considered droplet–
substrate system. A particular focus is placed on the conditions at the contact line.

2.1 Domains

Consider a liquid droplet in contact with a solid body, as shown in Fig 1. The following five
domains can be identified: The droplet domain D, the solid domain B, the surrounding gas
domain G, which is not considered any further here, and the free surface domain

S = SLG ∪ SSL ∪ SSG (1)

composed of the interfaces between liquid and gas, solid and liquid, and solid and gas. We
denote the surfaces of the liquid and the solid by

SL := SLG ∪ SSL ,
SS := SSL ∪ SSG .

(2)
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Figure 1: Problem setup: Liquid droplet D in contact with a deformable substrate B.

The fifth domain to be identified here is the contact line domain

C = SLG ∩ SSL ∩ SSG , (3)

where the three interfaces meet. The system may be viewed as closed, without boundary. In
general, however, boundary conditions may be prescribed on the problem, e.g. due to symmetry
conditions. If an imaginary plane, P, cuts through the domains, the boundaries ∂PD, ∂PB,
∂PS and ∂PC are created. On those boundaries either displacement (Dirichlet) or traction
(Neumann) boundary conditions are prescribed. Denoting the respective domains by ∂uΩ and
∂tΩ (Ω = B, C, D, or S) we have

∂PΩ = ∂uΩ ∪ ∂tΩ . (4)

We also require that ∂uΩ ∩ ∂tΩ = ∅, unless the prescribed displacements and tractions are
perpendicular to each other. With this, the boundaries of domains B, D and S are

∂B = ∂uB ∪ ∂tB ∪ SS , (5)

∂D = ∂uD ∪ ∂tD ∪ SL , (6)

and
∂S• = ∂uS• ∪ ∂tS• ∪ C , (7)

with • = LG, SL or SG. Further, we suppose that ∂PB, ∂PD and ∂PS are defined such that
∂PB ∩ SS = ∂PD ∩ SL = ∂PS ∩ C = ∅.

2.2 Surface kinematics

We proceed with a brief overview of the kinematical description of the interfaces. A more
detailed introduction can be found for example in [7].
Surface S can be described by a surface parameterization x = x(ξα), α = 1, 2.3 From this
we can define the co-variant tangent vectors aα = ∂x/∂ξα, the co-variant components of the
metric tensor, aαβ = aα · aβ, the contra-variant components of the metric tensor, [aαβ] =
[aαβ]−1, the contra-variant tangent vectors aα = aαβaβ, the area change da = Ja dξ1 dξ2

3Here and in the following all Greek indices run from 1 to 2, and imply summation when repeated.
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with Ja =
√

det aαβ, the surface normal n = ‖a1 × a2‖/Ja, the parametric derivative of aα,
aα,β = ∂aα/∂ξ

β, the co-variant derivative of aα, aα;β = (n ⊗ n)aα,β, and the co-variant
components of the curvature tensor bαβ = n ·aα,β. The triads {a1,a2,n} and {a1,a2,n} form
bases to describe points on S. To characterize the deformation of S, we introduce a reference
configuration, denoted S0, and described by the mapping X = X(ξα). All the kinematical
surface quantities associated with X ∈ S0 are denoted by capital letters. From the relation
between S0 and S, we can define the surface deformation gradient F = aα ⊗Aα, and the area
change da = J dA with J = Ja/JA and JA =

√
detAαβ.

2.3 Bulk kinematics

Inside the bulk domains B and D, the deformation is characterized by the usual deformation
gradient F̃ = ∂ϕ/∂X, where x = ϕ(X) denotes the mapping of material points from reference
domain (B0 and D0) to current domain (B and D). The volume change between these domains
is then given by dv = J̃ dV , with J̃ = det F̃ . Here, a tilde is used to distinguish bulk quantities
from surface quantities. Further details on the bulk kinematics can be found in the classic texts
of continuum mechanics, e.g. [8].

2.4 The wetting ridge

The surface tension within the interface SLG exerts a line load onto the substrate surface ∂B.
For deformable substrates this line load leads to a ridge on ∂B that is known as the wetting
ridge. The effect has been studied experimentally [9], theoretically – beginning with Lester [10]
and ranging to the recent work of Lubarda [11] – and numerically – by finite element methods
[12; 13] and molecular dynamics [14]. A review of the subject with many further references has
been provided recently by Yu [15]. Usually it is either assumed that the line load is supported by
a singular stress field in the substrate or that the line loads acts over a small width, associated
with the ‘thickness’ of interface SSL, which leads to a rounded cap of the otherwise sharp ridge
[10; 16; 11]. However, both these viewpoints are somewhat inconsistent: stress singularities are
not realistic and a phase boundary should not require a thickness. As is seen in the following
section, the equations derived here allow a more detailed and consistent interpretation. This is
shown in Fig. 2a: The line load γLG coming from SLG is equilibrated by the surface tensions γSL
and γSG of the substrate interface. These tensions are transferred into the solid by the pressure
p and the shear stress τ acting between the substrate B and its surface SS. The shear is only
present if the surface tension decreases from the peak value γS to the far-field value γ0S. Such a
decrease depends on the constitutive model of the surface tension. If the surface tension of the
substrate is considered constant, the shear is zero. For stiff substrates, the wetting ridge may
only span a very small distance ε. From a macroscopic viewpoint, the substrate surface may
therefore appear flat at C (Fig. 2b). The effect of p and τ is then perceived as a net point load
ε σ̃n acting on ∂B.4 In order to admit this point load surface SS is regularized into

SS = SSL ∪ SSG ∪ ε C , (8)

as shown in Fig. 2b. Along C, the microscopic viewpoint of Fig. 2a corresponds to Neumann’s
equilibrium, which is the classical viewpoint for liquid substrates. The macroscopic viewpoint of
Fig. 2b corresponds to Young’s equilibrium, which is the limit case for rigid solid substrates. If
the substrate is a liquid or a very soft solid, one may observe Neumann’s equilibrium even at the
macroscale. In modeling, we can choose to capture either Neumann’s view or Young’s view. In

4Here, σ̃ is the stress tensor of body B; n its surface normal.
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(a) (b)

Figure 2: Conditions at C: (a) wetting ridge (microscale view); (b) line load perceived as a
stress singularity (macroscale view for ε→ 0).

the latter case, the line load ε σ̃n appears in the model and leads to a stress singularity (unless
it is regularized by the width ε). According to the viewpoint in Fig. 2a, no stress singularity
appears in the substrate.

2.5 Restrictions

In this treatment, we restrict ourselves to quasi-static conditions, such that the liquid within D
in governed by hydrostatic pressure that is associated with volume change J̃ . Further, we only
consider hyperelastic material behavior of the media within domains B, D and S.

3 Derivation of the governing equations

This section presents the governing equations of the droplet system introduced above. For
the considered system, these follow from a global potential. The variation of that potential is
discussed, leading to the weak form and the Euler-Lagrange equations governing the system. It
is then shown that the system can be simplified in its complexity, leading to a reduced set of
equations.

3.1 The global potential

External work that is applied to the system is considered to be stored as internal energy within
the bulk domains B and D, and the surface domain S, and possibly also as contact energy
within the contact interface, defined by SSL and C.5 We therefore consider a global potential of
the form

Π = ΠintB + ΠintD + ΠintS + Πc −Πext . (9)

The energy stored within B is given by

ΠintB =

∫
B0
WB dV , (10)

5Here, we do not consider the storage of internal energy within the contact line C, as is done in [17].
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where WB = WB(F̃ ) is the hyperelastic energy density function characterizing the solid. For a
compressible fluid, the energy stored within domain D is given by

ΠintD =

∫
D0

WD dV , (11)

where WD = WD(J̃) is the energy density function characterizing the compressible fluid. For
an incompressible fluid, ΠintD is given by

ΠintD =

∫
D0

pf gv dV , (12)

where

gv = 1− J̃ = 0 , (13)

defines the incompressibility constraint. The quantity pf is then the associated Lagrange mul-
tiplier that physically corresponds to the fluid pressure. The energy stored within S is defined
by

ΠintS =

∫
S0
WS dA , (14)

where the surface energy density is considered in the form WS = WS(aαβ). Examples for WS
are given in Sec. 3.4 below. In general, WS may also depend on the surface curvature and not
only on the surface stretch [1].
Πc denotes the contact potential. Here we consider both normal and tangential contact con-
straints that may act independently on the contact surface Sc = SSL and the contact line C.
This is written as

Πc = −
∫
Sc
pc gn da−

∫
Sc
τα g

α
t da−

∫
C
q gn ds−

∫
C
qα g

α
t ds , (15)

where pc and q are the Lagrange multipliers associated with the impenetrability constraint

gn = (x− xp) · np ≥ 0 , (16)

and τα and qα are the Lagrange multipliers associated with the two sticking constraints

gαt = ξαp − ξαp 0 = 0 , α = 1, 2 . (17)

These contact constraints are defined through the closest projection of points between the
neighboring bodies. Following a standard contact treatment [3; 4], we (arbitrarily) designate
body B as master and D as slave body. Then, xp ∈ ∂B denotes the closest projection point of
some x ∈ ∂D, np denotes the surface normal of ∂B at xp, ξαp denotes the parametric surface
coordinate of xp, and ξαp 0 denotes the initial parametric coordinate when contact first occurs.
These coordinates are the solution of the two nonlinear equations

fα := (x− xp) · apα = 0 . (18)

Physically, pc and τα correspond to surface pressure and shear, while q and qα correspond
to normal and tangential line forces. For classical solid contact, the line integrals are absent
(q = qα = 0), while for a static droplet there is no surface friction (τα = 0). In the latter case,
the line integrals are essential for capturing the tangential contact forces.
The external potential is considered in the form

Πext =

∫
B0 ∪D0

x · ρ0 b̄ dV +

∫
S ∪ ∂tB

x · f̄ da+

∫
∂tD

x · p̄nda+

∫
∂tS
x · t̄ds , (19)
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where b̄ is a prescribed, constant body force, f̄ is a prescribed surface traction such that J f̄ is
constant, p̄ is a prescribed surface pressure and t̄ is a prescribed line force. It is assumed that
p̄nda and t̄ ds are invariant under deformation.
We now consider a variation of the mapping X → x, denoted by δx. The variation of the
external potential thus is

δΠext =

∫
B0 ∪D0

δx · ρ0 b̄ dV +

∫
S ∪ ∂tB

δx · f̄ da+

∫
∂tD

δx · p̄nda+

∫
∂tS

δx · t̄ds . (20)

3.2 Variation of various kinematical quantities

The following section discusses the variation of important kinematical quantities that are later
needed for the variation and linearization of Π.
The variation of J̃ = det F̃ is given as

δJ̃ = J̃ div δx , (21)

since δJ̃ = ∂J̃/∂F̃ : δF̃ , ∂J̃/∂F̃ = J̃F̃
−T

[8] and δF̃ = grad (δx) F̃ .
The variation of the tangent vector simply is

δaα = δx,α . (22)

Since δx = δxα a
α + δxn we can expand the last result into

δx,β = δx;β = δxα;β a
α + δxα a

α
;β + δx;β n+ δxn;β . (23)

The semicolon denotes the covariant derivative w.r.t. ξα, which is equal to the partial derivative
w.r.t. ξα for general vectors. According to the formula of Weingarten n;α = −bαβ aβ.
The variation of the metric tensor is

δaαβ = aα · δaβ + δaα · aβ , (24)

which, due to (23), can also be written as

δaαβ = δxα;β + δxβ;α − 2 δx bαβ . (25)

Here we have used aα;β · aγ = 0. From J = Ja/JA, Ja =
√

det[aαβ], ∂Ja/∂aαβ = det[aαβ] aαβ

follows first
∂J

∂aαβ
=
J

2
aαβ , (26)

and then with Eq. (24)

δJ =
J

2
aαβδaαβ = Jaα · δaα . (27)

The variation of the normal vector is [4]

δn = −aα (n · δaα) . (28)

From aα · aβ = δαβ and aα · n = 0 one can then obtain

δaα =
(
aαβ n⊗ n− aβ ⊗ aα

)
δaβ , (29)

and evaluate the variation
δaαβ = δaα · aβ + aα · δaβ . (30)
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Alternatively, δaαβ can also be computed from

δaαβ =
∂aαβ

∂aγδ
δaγδ (31)

considering

aαβ =
1

a
eαγ aγδ e

δβ , (32)

with a := det aαβ and [eαβ] = [1 0;−1 0]. Introducing

mαβγδ := 2
∂aαβ

∂aγδ
, (33)

we find

mαβγδ =
1

a

(
eαγeβδ + eαδeβγ

)
− 2aαβaγδ . (34)

The variation of the line stretch λc := ‖ac‖, where ac = ∂xc/∂ξ is the tangent to C at xc(ξ) ∈ C,
is

δλc =
1

λc
ac · δac . (35)

The variation of dependant quantities, like for example xp = x(ξp), is

δ(xp) = δx(ξp) + x,α(ξp) δξαp . (36)

Denoting δxp := δx(ξp) and apα := x,α(ξp), we have in short

δ(xp) = δxp + apα δξαp . (37)

Analogous expressions are obtained for δ(apα), δ(aαp) and δ(np). With this, the variation of the
contact constrains can be determined [3; 4]. We find

δgn =
(
δx− δxp − apα δξαp

)
· np + (x− xp) ·

(
δnp + np,α δξ

α
p

)
(38)

and, by taking the variation of (18),

δgαt = δξαp = cαβp
[(
δx− δxp

)
· apβ + gnnp · δxp,β

]
, (39)

where [
cαβp
]

:=
[
apαβ − gn b

p
αβ

]−1
. (40)

Here apβ, apαβ and bpαβ are evaluated at xp. At equilibrium, (38) simplifies to

δĝn =
(
δx− δxp

)
· np , (41)

since apα · np = aαp · np = 0, while (39) simplifies to

δĝαt := δgαt
∣∣
gn=0

=
(
δx− δxp

)
· aαp . (42)

The hat is used to denote these special cases.
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3.3 Variation of the internal potentials

This section presents the variation of the internal potentials ΠintB, ΠintD and ΠintS . The varia-
tion of Πc is then discussed in Sec. 3.5.
For hyperelastic solids the first Piola-Kirchhoff stress is given by

P :=
∂WB

∂F̃
(43)

such that δWB = P : δF̃ . Hence

δΠintB =

∫
B0
P : δF̃ dV , (44)

which can also be written as

δΠintB =

∫
B
σ̃ : grad δx dv , (45)

where σ̃ is the Cauchy stress (in R3). With (21) and dv = J̃ dV we obtain for an incompressible
fluid

δΠintD = −
∫
D
pf div δx dv +

∫
D0

δpf gv dV . (46)

For the compressible case we have

δΠintD = −
∫
D
pf div δx dv , (47)

where the fluid pressure is now defined by

pf := −∂WD
∂J̃

. (48)

In a similar manner to (43) and (48) we define the in-plane membrane stress σ = σαβ aα ⊗ aβ
from

σαβ :=
2

J

∂WS
∂aαβ

. (49)

With

δWS =
∂WS
∂aαβ

δaαβ , (50)

(25), and da = J dA we thus have

δΠintS =

∫
S

(
δxα;β σ

αβ − δx σαβ bαβ
)

da . (51)

3.4 Membrane constitutive examples

To illustrate the constitutive behavior at interface S, we present some examples. The first
example is a liquid membrane with constant surface energy γ. The energy density (per reference
surface) then is

WS = γ J , (52)

such that σαβ becomes
σαβ = γ aαβ , (53)
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according to (26). Another example is

WS =
µ

2

(
I1 − 2 lnJ

)
, I1 := Aαβ aαβ , (54)

which gives
σαβ = µ/J

(
Aαβ − aαβ

)
. (55)

This is a constitutive relation that is suitable for solids and can be used for the numerical
stabilization of liquid membranes [18]. The last example considers constrained membranes. In
the presence of a constraint g = 0, the membrane stress is given by

σαβ =
2

J

[
∂WS
∂aαβ

+ qS
∂g

∂aαβ

]
, (56)

where qS is the Lagrange multiplier associated with g. For instance, if the membrane is made
of incompressible rubber, we have

WS = µ/2
(
Ĩ1 − 3

)
, Ĩ1 = I1 + λ23 , (57)

and

g = gv = 1− J̃ = 0 , (J̃ = J λ3). (58)

Here λ3 denotes for the out-of-plane stretch of the rubber membrane. qS can then be obtained
from the condition that the out-of-plane stress σ̃33 vanishes. This stress can be found from

σ̃33 =
1

JT

[
∂WS
∂λ3

+ qS
∂g

∂λ3

]
, (59)

see Appendix A. One finds qS = µ/J2 and thus

σαβ = µ/J
(
Aαβ − aαβ/J2

)
. (60)

This material model has been used in the computational examples of [7].

3.5 Variation of the contact potential

We now turn towards the contact potential Πc. Its variation readily follows as

δΠc = −
∫
Sc

(
pc δgn + τα δg

α
t

)
da −

∫
C

(
q δgn + qα δg

α
t

)
ds

−
∫
Sc

(
pc gn + τα g

α
t

) δJ
J

da −
∫
C

(
q gn + qα g

α
t

) δλc
λc

ds

−
∫
Sc

(
δpc gn + δτα g

α
t

)
da −

∫
C

(
δq gn + δqα g

α
t

)
ds ,

(61)

where we have used da = J dA and ds = λc dS. The variation of the contact constraints is given
in (38) and (39). Note, that when body B is rigid, we have δxp = 0, such that (61) simplifies
significantly. At equilibrium, where gn = 0 and gαt = 0, Eq. (61) reduces to

δΠ̂c = −
∫
Sc

(
pc δĝn + τα δĝ

α
t

)
da −

∫
C

(
q δĝn + qα δĝ

α
t

)
ds

−
∫
Sc

(
δpc gn + δτα g

α
t

)
da −

∫
C

(
δq gn + δqα g

α
t

)
ds .

(62)
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Inserting (41) and (42), the first line expands into

δxΠ̂c = −
∫
Sc
pcnp · δx da −

∫
Sc
τα a

α
p · δx da −

∫
C
qnp · δx ds −

∫
C
qα a

α
p · δxds

+

∫
Sc
pcnp · δxp da +

∫
Sc
τα a

α
p · δxp da +

∫
C
qnp · δxp ds +

∫
C
qα a

α
p · δxp ds .

(63)
Introducing the contact traction

f c = τα a
α
p + pcnp on Sc (64)

and contact line force
qc = qα a

α
p + qnp on C (65)

we get

δΠ̂c = −
∫
Sc
f c ·

(
δx− δxp

)
da −

∫
Sc

(
δpc gn + δτα g

α
t

)
da

−
∫
C
qc ·

(
δx− δxp

)
ds −

∫
C

(
δq gn + δqα g

α
t

)
ds .

(66)

δΠ̂c is an approximation to δΠc that is exact at equilibrium. Therefore, δΠ̂c may be used instead
of δΠc to determine equilibrium, even though this introduces a variational inconsistency.

3.6 Divergence Theorems

Some of the terms appearing in variations δΠintB, δΠintD and δΠintS can be rewritten using the
divergence theorem. This gives∫

B
σ̃ : grad δx dv =

∫
∂B
δx · σ̃nda−

∫
B
δx · div σ̃ dv , (67)

∫
D
pf div δx dv =

∫
∂D
δx · pf nda−

∫
D
δx · grad pf dv , (68)

and ∫
S•
δxα;β σ

αβ da =

∫
∂S•

δxα σ
αβmβ ds−

∫
S•
δxα σ

αβ
;β da . (69)

For the considered problem the boundaries of domains B, D and S• are given by (5) – (7). The
contribution ε C, according to (8), is needed in order to capture line loads acting on surface ∂B
(see Fig. 2b). In this case, parameter ε → 0 is then a regularization parameter required for
dimensional consistency. Note, that usually δx = 0 on the Dirichlet boundaries ∂uB, ∂uD and
∂uS•.

3.7 Euler-Lagrange equations

Given the developments of the preceding sections, we can now examine the Euler-Lagrange
equation of the system. Therefore the variation of potential Π is set to zero for all possible
variations of the deformation and Lagrange multipliers. The contact contribution associated
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with pc is only considered active if pc > 0. Otherwise this contribution is omitted. Setting the
various variations to zero successively, yields the following six statements

δxΠ = δxΠint + δxΠc − δxΠext = 0 ∀ δx, δxp ∈ W ,

δpfΠ = δpfΠintD = 0 ∀ δpf ∈ Pf ,

δpcΠ = δpcΠc = 0 ∀ δpc ∈ Pc ,

δταΠ = δταΠc = 0 ∀ δτα ∈ Tα ,

δqΠ = δqΠc = 0 ∀ δq ∈ Q ,

δqαΠ = δqαΠc = 0 ∀ δqα ∈ Qα ,

(70)

where W, Pf , Pc, Tα, Q and Qα are suitable function spaces. The last five statements, i.e.∫
D0

δpf gv dV = 0 ∀ δpf ∈ Pf , (71)

∫
S
δpc gn da = 0 ∀ δpc ∈ Pc , (72)∫

S
δτα g

α
t da = 0 ∀ δτα ∈ Tα , (73)∫

C
δq gn ds = 0 ∀ δq ∈ Q , (74)

and ∫
C
δqα g

α
t ds = 0 ∀ δqα ∈ Qα , (75)

give back the incompressibility constraint gv = 0 and the four contact constraints gn = 0 on Sc,
gαt = 0 on Sc, gn = 0 on C and gαt on C that are active during contact.

The first equation, (70.1), can be split into two separate systems, composed of the droplet D
and the substrate B. By choice, we attribute the internal energy of interface SSL to the droplet
system. Setting the variation δx = 0 on each system, yields

δxDΠ =

∫
D

[
− pf div δx− ρ b̄ · δx

]
dv −

∫
∂tD

p̄n · δxda

+

∫
SL

[
σαβ δxα;β − σαβ bαβ δx− f̄ · δx

]
da−

∫
∂tSL

t̄ · δxda

−
∫
Sc
f c · δxda−

∫
C
qc · δxds = 0 , ∀δx ∈ WD

(76)

for the droplet system, and

δxBΠ =

∫
B

[
σ̃ : grad δx− ρ b̄ · δx

]
dv −

∫
∂tB
f̄ · δxda

+

∫
SSG

[
σαβ δxα;β − σαβ bαβ δx− f̄ · δx

]
da−

∫
∂tSSG

t̄ · δx da

+

∫
Sc
f c · δx da+

∫
C
qc · δx ds = 0, ∀δx ∈ WB

(77)

for the substrate system. Here,WD andWB denote the kinematically admissible function spaces
for the two systems, and δxp, the variation of the surface point xp ∈ ∂B, has been replaced
by the equivalent symbol δx. As seen, the two systems are coupled by the contact forces f c
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and qc. It is noted that these forces are defined in Sec. 3.5 at equilibrium. If the system is
investigated in another configuration, the more general formulation appearing in (61) needs to
be considered for the coupling. In this case a split into systems (76) and (77) is not straight
forward. Eqs. (76) and (77) are the governing weak form equations of the two systems. They are
the basis of a finite element discretization of the problem [18]. With the help of the divergence
theorem, Eq. (76) can be rewritten into

0 =

∫
D

(
− grad pf + ρ b̄

)
· δx dv +

∫
∂tD

(
pf + p̄

)
n · δxda+

∫
SLG ∪SSL

pf n · δx da

+

∫
SLG

[
σαβLG;β δxα + σαβLG bαβ δx+ f̄ · δx

]
da+

∫
∂tSLG

(
t̄α − tαLG

)
δxα ds−

∫
C
tαLG δxα ds

+

∫
SSL

[
σαβSL;β δxα + σαβSL bαβ δx+ f̄ · δx

]
da+

∫
∂tSSL

(
t̄α − tαSL

)
δxα ds−

∫
C
tαSL δxα ds

+

∫
Sc
f c · δx da+

∫
C
qc · δx ds .

(78)
This can be further rearranged into

0 =

∫
D

(
− grad pf + ρ b̄

)
· δx dv +

∫
∂tD

(
pf + p̄

)
n · δx da

+

∫
SLG

[(
σαβLG;β + f̄α

)
δxα +

(
σαβLG bαβ + pf + p̄

)
δx
]

da

+

∫
SSL

[(
σαβSL;β + fαc + f̄α

)
δxα +

(
σαβSL bαβ + pf − pc + p̄

)
δx
]

da

+

∫
∂tSLG

(
t̄− tLG

)
δxα ds+

∫
∂tSSL

(
t̄− tSL

)
δxα ds−

∫
C

(
qc − tLG − tSL

)
· δx ds .

(79)

Applying the divergence theorem to Eq. (77) gives

0 =

∫
B

(
div σ̃ + ρ b̄

)
· δx dv +

∫
∂tB

(
f̄ − σ̃n

)
· δxda−

∫
SS ∪ ε C

δx · σ̃nda

+

∫
SSG

[
σαβSG;β δxα + σαβSG bαβ δx+ f̄ · δx

]
da+

∫
∂tSSG

(
t̄α − tαSG

)
δxα ds−

∫
C
tαSG δxα ds

−
∫
Sc
f c · δxda−

∫
C
qc · δxds .

(80)
Denoting σ̃α := aα · σ̃n and σ̃ := n · σ̃n, this can be further rearranged into

0 =

∫
B

(
div σ̃ + ρ b̄

)
· δxdv +

∫
∂tB

(
f̄ − σ̃n

)
· δxda

+

∫
SSG

[(
σαβSG;β + f̄α − σ̃α

)
δxα +

(
σαβSG bαβ + p̄− σ̃

)
δx
]

da

+

∫
∂tSSG

(
t̄− tSG

)
δxα ds−

∫
Sc

(
f c + σ̃n

)
· δx da−

∫
C

(
qc + tSG + ε σ̃n

)
· δx ds .

(81)

Note, that due to

tα;α = σαβ;β aα + σαβbαβ n , (82)

the middle part can be rewritten into∫
SSG

(
tαSG;α + f̄ − σ̃n

)
· δx da . (83)
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Now, by considering δx = 0 successively on the various domains6 we obtain the remaining
Euler-Lagrange equations

grad pf − ρ b̄ = 0 on D , (84)

−pf = p̄ on ∂tD , (85)

σαβLG;β + f̄α = 0 on SLG , (86)

σαβLG bαβ + pf + p̄ = 0 on SLG , (87)

tLG = t̄ on ∂tSLG , (88)

σαβSL;β + fαc + f̄α = 0 on SSL , (89)

σαβSL bαβ + pf − pc + p̄ = 0 on SSL , (90)

tSL = t̄ on ∂tSSL , (91)

tLG + tSL = qc on C , (92)

div σ̃ + ρ b̄ = 0 on B , (93)

σ̃n = f̄ on ∂tB , (94)

σαβSG;β − σ̃
α + f̄α = 0 on SSG , (95)

σαβSG bαβ − σ̃ + p̄ = 0 on SSG , (96)

tSG = t̄ on ∂tSSG , (97)

σ̃n = −f c on SSL , (98)

tSG + ε σ̃n = −qc on C . (99)

Altogether, the considered system is thus governed by 21 Euler-Lagrange equations. It is noted,
that it is straight forward to modify the presented system, such that also body D is governed
by a general equilibrium equation of the form (93). Likewise, one can also modify the system
such that B is governed by an equation of the form (84).

3.8 Simplification: Reduced set of governing equations

The set of Euler-Lagrange equations can be reduced and simplified by considering eliminations
and analytical solutions. Considering an incompressible fluid, where ρ = ρ0, Eq. (84) is solved
by

pf = x · ρ b̄+ pv , (100)

where pv is an unknown datum pressure at the origin that is discussed further below. We can
thus eliminate pf as well as f c and qc from the set of Euler-Lagrange equations. The remaining

6First consider δx = 0 on all surfaces and lines to obtain (84) and (93). Then use these results and consider
δx = 0 on all line boundaries and on selected surfaces to obtain (85), (86), (87), (89), (90), (94), (95), (96) and
(98). Finally use the previous results and δx = 0 on selected line boundaries to obtain (88), (91), (92), (97) and
(99).
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equilibrium equations are thus given by Eqs. (86)–(88), Eqs. (93)–(97) and

σαβSL;β − σ̃
α + f̄α = 0 on SSL , (101)

σαβSL bαβ + pf − σ̃ + p̄ = 0 on SSL , (102)

tSL = t̄ on ∂tSSL , (103)

tLG + tSL + tSG + ε σ̃n = 0 on C . (104)

According to the viewpoint in Fig. 2a, ε σ̃n is absent from the last equation, which is then
Neumann’s equilibrium. On the other hand, according to the viewpoint in Fig. 2b, ε σ̃n is
needed to capture the point load acting on the substrate surface ∂B, since now tSL and tSG
can only balance the horizontal component of tLG (Young’s equilibrium). If the droplet is not
pinned along C, ε σ̃n is normal to ∂B.

Also, weak form (76) simplifies in view of (100): We now have

0 =

∫
SL

[
σαβ δxα;β − σαβ bαβ δx−

(
pf n+ f̄

)
· δx

]
da−

∫
∂tSL

t̄ · δx da

−
∫
Sc
f c · δx da−

∫
C
qc · δx ds .

(105)

Here, pf is viewed as an external force on interface SL that is given by (100). The consequences
of this revision are discussed in Sec. 4.4. The quantity pv is indeterminate from equilibrium
and must remain related to the incompressibility constraint (13). Treating pv as the Lagrange
multiplier associated with this constraint, δpf now corresponds to δpv, which is constant across
D. Eq. (71) now reads

δpf Π̂ = δpv

∫
D0

gv dV = δpv
(
V0 − V

)
= 0 ∀ δpv ∈ Pv , (106)

where

V =

∫
D

dv =
1

3

∫
∂D
x · nda (107)

and

V0 =

∫
D0

dV =
1

3

∫
∂D0

X ·N dA (108)

denote the volume of D0 and D. This implies that now the global incompressibility constraint

ĝv = V0 − V = 0 (109)

is enforced. The reduced system is now governed by the two coupled weak equilibrium equations
(77) and (105), the weak constraints (71)–(75), and the strong constraint (109). The elimination
of unknown pf at this stage7 leads to an unsymmetric formulation as is seen in Sec. 4.4. For
this reason, the unsymmetry stemming from the variational inconsistency introduced by (66),
also seen in Sec. 4.4, does not introduce any further disadvantage.

3.9 The solution of the Euler-Lagrange equations

The Euler-Lagrange equations given above can be solved in general by numerical methods,
that are for example based on the weak form equations (76), (77) and (105); e.g. see [18].

7After variation and before linearization.
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Numerical methods are not discussed here, although an example is shown for illustration in
Sec. 5. Analytical solutions, on the other hand, can only be found for special cases. One of
these is the case where we have no external loading (b̄ = 0, f̄ = f̄αaα + p̄n = 0 and t̄ = 0),

constant surface tension according to (53) (so that σαβ;β = 0 and σαβbαβ = γ bαα), and a stiff
substrate that obeys small deformation theory. In this case, the substrate surface SS remains
flat, so that bαα = 0, and the droplet surface SLG attains a spherical shape. The mean curvature
of the sphere is bαα = −2/R0, where R0 denotes the radius. The fluid pressure, constant within
D, thus is pf = 2γLG/R0 according to (87). On SSL we then find the contact pressure pc = pf
and contact shear fαc = 0 according to (89) and (90). The contact radius depends on the droplet
volume and the contact angle at C, which in turn depends on the three surface tensions. If the
contact line is not pinned, the line force ε σ̃n is normal to the substrate surface, and one can
obtain the relations

γSG − γSL = γLG cos θc ,

ε σ̃ = γLG sin θc ,
(110)

from (104). Using the half-space solution of Bousinesq and Cerutti [19] one may then compute
the stress state σ̃ due to the line load and contact pressure.

4 Linearization of the governing equations

This section presents the linearization of the governing weak forms. Both the full system
(Sec. 3.7) and the reduced (Sec. 3.8) system are discussed. From the linearization, the tangent
of the system is found, which allows an assessment of the system’s stability. The linearization is
further needed for certain numerical descriptions of the system. In particular, the consequences
of the reduction are illustrated.
Consider a state of the system, characterized by the variable y = [x, pf , pc, τα, q, qα]. Further
consider a change of this state, denoted ∆y = [∆x, ∆pf , ∆pc, ∆τα, ∆q, ∆qα]. The linearization
of variation δΠ at this state in the direction of the considered change, is written as

δΠ(y + ∆y) = δΠ(y) + ∆δΠ(y) . (111)

Now, before examining the change ∆δΠ, we discuss the linearization of kinematical quantities
and constitutive relations.

4.1 Linearization of various kinematical quantities

The determination of the change is analogous to the determination of the variation. The changes
∆J̃ , ∆aα, ∆aαβ, ∆J , ∆n, ∆aα, ∆aαβ, ∆λc, ∆(xp), ∆gn and ∆gαt = ∆ξαp are thus given in
analogy to the expressions of Sec. 3.2. What remains to be determined are the changes of the
variations. Some of these are easily determined or of minor importance. Those that are neither
are provided in the following.
The change of variation δJ is given by

∆δJ = J δaα ·
(
aαβ n⊗ n+ aα ⊗ aβ − aβ ⊗ aα

)
∆aβ , (112)

according to (27) and (29), while ∆δλc is

∆δλc =
1

λc
∆ac · δac −

1

λ3c
(∆ac · ac)(ac · δac) , (113)
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according to (35). For a dependent quantity, like xp = x(ξαp ), we find

∆δ(xp) = δapα ∆ξαp + ∆apα δξαp + δξαp a
p
α,β ∆ξβp + apα ∆δξαp . (114)

Similar expressions follow for ∆δ(apα) and ∆δ(np). The changes of the contact quantities δgn
and δgt can then be determined as [3; 4]

∆δgn = −np ·
(
δapα ∆ξαp + ∆apα δξαp + δξαp a

p
α,β ∆ξβp

)
+ gnnp ·

(
δapα + apα,γ δξ

γ
p

)
aαβp

(
∆apβ + apβ,δ ∆ξδp

)
· np

(115)

and, by examining ∆δfα from (18),

∆δξαp = cαβp
[
− apβ ·

(
δapγ ∆ξγp + ∆apγ δξ

γ
p + δξγp a

p
γ,δ ∆ξδp

)
+ gnnp ·

(
δapβ,γ ∆ξγp + ∆apβ,γ δξ

γ
p + δξγp a

p
β,γδ ∆ξδp

)
− apγ ·

(
δapβ ∆ξγp + ∆apβ δξ

γ
p + δξγp a

p
β,δ ∆ξδp + δξδp a

p
β,δ ∆ξγp

)
+
(
δx− δxp

)
·
(

∆apβ + apβ,γ ∆ξγp
)

+
(
∆x−∆xp

)
·
(
δapβ + apβ,γ δξ

γ
p

) ]
.

(116)
At equilibrium the expressions for δgn and δgt simplify to those given in (41) and (42), which
allow an identification of the contact forces in (64) and (65). If one chooses to work with this
simplification, linearizing δĝn and δĝt with disregard to their derivation, one finds

∆δĝn = ∆(δĝn) = −np ·
(
δapα ∆ξαp + ∆apα δξ̂αp + δ̂ξαp a

p
α,β ∆ξβp

)
(117)

and
∆δξ̂αp = ∆(δξ̂αp ) = aαβp

[
− apβ ·

(
δapγ ∆ξγp + ∆apγ δξ̂

γ
p + δ̂ξγp a

p
γ,δ ∆ξδp

)
− apγ ·

(
∆apβ δ̂ξ

γ
p + δξ̂γp a

p
β,δ ∆ξδp

)
+
(
δx− δxp

)
·
(

∆apβ + apβ,γ ∆ξγp
) ]

.

(118)

These expressions contain only a subset of the terms appearing in (115) and (116). But they
are not symmetric w.r.t. linearization and variation.

4.2 Linearization of the stress measures

We now discuss the linearization of stress measures σ̃, pf and σαβ that characterize the consti-
tutive behavior of the system. The Cauchy stress in B can be linearized through

∆σ̃ij =
∂σ̃ij
∂ẽk`

∆ẽkl . (119)

where ek` are the components8 of the Green-Almansi strain tensor ẽ = 1
2

(
Ĩ − F̃−T F̃−1

)
. The

elasticity tensor

c̃ijk` =
∂σ̃ij
∂ẽk`

(120)

8Latin symbols are used for indices running from 1 to 3.

17



follows from the type of constitutive model chosen for B. This is not discussed further here.
For compressible fluid behavior in D the fluid pressure can be linearized through

∆pf =
∂pf

∂J̃
∆J̃ , (121)

where

K := −∂pf
∂J̃

=
∂2WD
∂J̃2

(122)

is the bulk modulus of the fluid. The membrane stress ταβ = J σαβ, considered for convenience,
can be linearized through

∆ταβ =
∂ταβ

∂aγδ
∆aγδ . (123)

The tensor

cαβγδ := 2
∂ταβ

∂aγδ
(124)

denotes the elasticity tensor for the membrane. For the three examples in Sec. 3.4 one finds

cαβγδ = γJ
(1

a

(
eαγeβδ + eαδeβγ

)
− aαβaγδ

)
(125)

for stress (53),

cαβγδ = µ
(

2aαβaγδ − 1

a

(
eαγeβδ + eαδeβγ

))
(126)

for stress (55), and

cαβγδ = µJ−2
(

4aαβaγδ − 1

a

(
eαγeβδ + eαδeβγ

))
(127)

for stress (60). We note that in the first case – the case of liquids – the elasticity tensor is not
positive definite, since

mαβ c
αβγδmγδ > 0 ∀mαβ 6= 0 (128)

is not satisfied. E.g. taking mαβ = aαβ yields mαβ c
αβγδmγδ = −8Jγ.

4.3 Linearization of the full system

With the relations of the preceding two sections, the change ∆δΠ can now be evaluated. It is
seen that this quantity is symmetric w.r.t. linearization and variation. The change of δΠintB
gives the well-known result [20]

∆δΠintB =

∫
B
δxi,j σ̃jk ∆xi,k dv +

∫
B
δxi,j c̃ijk` ∆xk,` dv . (129)

The change of δΠintD simply gives

∆δΠintD =

∫
D
pf div δx div ∆x dv −

∫
D
δpf div ∆x dv −

∫
D

∆pf div δxdv , (130)

for the incompressible case, and

∆δΠintD =

∫
D
pf div δx div ∆x dv +

∫
D
K div δx div ∆x dv , (131)
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for the compressible case. To linearize δΠintS , first note that since δxα;β = δx;β · aα + δx bαβ
one can write

δΠintS =

∫
S0
δx;α · ταβ aβ dA . (132)

We thus obtain

∆δΠintS =

∫
S0
δx;α ·∆ταβ aβ dA+

∫
S0
δx;α · ταβ ∆aβ dA . (133)

Inserting ∆ταβ and ∆aγδ from above, yields

∆δΠintS =

∫
S0
cαβγδ δx,α (aβ ⊗ aγ) ∆x,δ dA+

∫
S0
δx,α · ταβ ∆x,β dA . (134)

The linearization of the contact variation δΠc in (61) is straight forward, but yields many
different terms. For conciseness, we only list the 8 terms emanating from pc. This gives

∆δΠc = −
∫
Sc
pc ∆δgn da−

∫
Sc

(
∆pc δgn + δpc ∆gn

)
da−

∫
Sc
pc gn

∆δJ

J
da

−
∫
Sc
pc

(
δgn

∆J

J
+ ∆gn

δJ

J

)
da−

∫
Sc
gn

(
∆pc

δJ

J
+ δpc

∆J

J

)
da+ ... .

(135)

The remaining 24 terms, emanating from τα, q and qα, look very similar. Here, contributions
∆δgn, ∆δgαt , ∆δJ and ∆δλc are given in Sec. 4.1. Note, that several terms vanish in ∆δΠc at
equilibrium where gn = gαt = 0.
The last contribution, the change of δΠext is simply

∆δΠext = 0 . (136)

The complete linearization of the weak form is then characterized by the change

∆δΠ = ∆δΠintB + ∆δΠintD + ∆δΠintS + ∆δΠc . (137)

4.4 Linearization of the reduced system

The reduced system, presented in Sec. 3.8 is computationally interesting since it is more efficient
than the full system. However, its linearization turns out to be unsymmetric, since the subse-
quent linearization is treated differently than the initial variation. For the reduced system the
fluid pressure pf is treated as an external force in (105). The linearization of this contribution
yields

∆δΠ̂ext = −
∫
SL
δx ·∆pf nda−

∫
SL
δx · pf ∆(nda) . (138)

Here we have
∆pf = ∆pv + ∆x · ρ b̄ , (139)

due to (100), and
∆(nda) =

(
n⊗ aα − aα ⊗ n

)
∆aα da , (140)

due to (27) and (28). The linearization of contribution δpf Π̂, appearing in (106), gives

∆δpf Π̂ = −δpv ∆V , (141)

with

∆V =
1

3

∫
SL

∆x · nda+
1

3

∫
SL
x ·∆(nda) . (142)
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If surface SL is closed, or if ∆x = 0 on the boundary ∂SL, we have (see Appendix B)∫
SL
x · (n⊗ aα − aα ⊗ n) ∆aα da = 2

∫
SL

∆x · nda , (143)

such that

∆δpf Π̂ = −δpv
∫
SL

∆x · nda (144)

in this case. This part is symmetric to the first term of ∆δΠ̂ext. But due to the second term in
∆δΠ̂ext, the linearization of the reduced weak form remains unsymmetric. Therefore nothing
is lost if the contact contribution is also considered in the simplified version of expression (66).
For this we find

∆δΠ̂c = −
∫
Sc
pc ∆δĝn da−

∫
Sc

(
∆pc δĝn + δpc ∆gn

)
da−

∫
Sc

(
pc δ̂gn + gn δpc

) ∆J

J
da+ ...

(145)
The complete linearization of the reduced weak form is then characterized by the change

∆δΠ = ∆δΠintB + ∆δpf Π̂ + ∆δΠintS + ∆δΠ̂c −∆δΠ̂ext . (146)

5 A computational example

To give an impression of the scope of applications of the presented model equations, we briefly
discuss a computational example. Consider a liquid droplet, D, in quasi-static contact with
a deformable substrate block B. The system is analyzed by a finite element discretization of
the reduced formulation given in Secs. 3.8 and 4.4. The substrate is discretized by hexahedral
elements. In the bulk, linear 8-noded elements are used. On the upper substrate surface (i.e. on
SS), quadratically enriched surface elements, with 13 nodes, are used [21]. The interfaces are
modeled by the stabilized membrane formulation of [18]. A suitable computational contact
algorithm for line contact on deformable substrates has not been developed yet. Therefore the
contact line C is assumed to be pinned on B in the example. Then, no contact algorithm is
required. This corresponds to adding weak forms (77) and (105), thus eliminating the contact
integrals over Sc and C. In the undeformed configuration the block B has the dimension 2L0 ×
2L0 × L0. The droplet has the volume 2L3

0. C is pinned at the radius L0. A Neo-Hookean
material model is considered for B with the constants E = E0 and ν = 0.3. The surface
tension of all interfaces is considered constant, using γLG = 0.08E0L0, γSL = 0.10E0L0 and
γSG = 0.04E0L0. A constant body force acts on the medium enclosed by the droplet considering
ρb̄ = −0.2E0/L0 [sinα, 0, cosα]T with α = 20◦. This corresponds to a droplet under gravity
on an inclined substrate. Fig. 3 shows the finite element solution for the given parameters. It
can be seen that large deformations appear in the system, leading to a distinct wetting ridge
along C.

6 Conclusion

This paper presents the governing equations of filled liquid and solid membranes in contact
with a deformable substrates. An example are liquid droplets on soft substrates. Apart from
considering quasi-static conditions, the problem is treated very general: It includes compressible
and incompressible liquids, general hyperelastic membrane models that may contain internal
constraints, and general hyperelastic substrates. It also includes two different treatments of
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a.

b.

c.

e.

d.

f.

Figure 3: Contact between a liquid droplet and a deformable substrate: a)–b) reference solution
for ‖ρb̄‖ = 0; c)–f) solution for ‖ρb̄‖ = 0.2E0/L0; the coloring in e) shows the pressure pf/E0

acting on SL; otherwise the coloring shows the vertical stress component σ̃33/E0 within B.
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the wetting ridge that appears at the three phase boundary: a detailed microscopic and a
coarse-scale macroscopic viewpoint. The contact between membrane and substrate is formu-
lated considering distinct contact constraints for the contact surface Sc and the contact line
C. The considered setup is governed by a global potential Π. It is shown that the governing
equilibrium and constraint equations follow as the Euler-Lagrange equations of this potential.
It is further shown how these can be simplified into a reduced set of equations that is conve-
nient for computational approaches. For both sets, the full system and the reduced system, the
linearization is then derived.
The present model formulation is suitable for numerical solution approaches like the finite el-
ement method. A corresponding example that does not require the contact contributions is
briefly discussed. Concerning contact, a FE implementation of the model has been considered
for rigid substrates and without sticking contact [18]. The extension of this implementation
to the full problem requires a suitable algorithm for line contact, which will be considered in
future work.

A Constrained membrane elasticity

For a constrained elastic body B, the first Piola-Kirchhoff stress follows from

P =
∂ŴB

∂F̃
, ŴB = WB + qB gB , (147)

where WB = WB(F̃ ) and gB = gB(F̃ ) are the energy density (per reference volume) and the
constraint of body B; qB corresponds to the Lagrange multiplier. Within a membrane, the bulk
deformation gradient takes the form

F̃ = F + λ3n⊗N , (148)

where F = aα ⊗Aα is the in-plane deformation gradient. Considering

∆ŴB =
∂ŴB

∂F̃
: ∆F̃ , (149)

P = J̃ σ̃ F̃
−T

and σ̃ = σ/t+ σ̃33n⊗n, where t is the current thickness of the membrane, one
can derive

∆ŴB =
J

2T
σαβ ∆aαβ + J σ̃33 ∆λ3 , (150)

where T = t/λ3 is the reference thickness of the membrane. Introducing the energy density
(per reference surface area)

ŴS = ŴB T = WS + qS gB , WS = WB T , qS = qB T , (151)

for which we can write

∆ŴS =
∂ŴS
∂aαβ

∆aαβ +
∂ŴS
∂λ3

∆λ3 (152)

in the case of isotropy, allows us to identify constitutive relations (56) and (59).
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B Proof of Eq. (143)

To prove Eq. (143), one can first show that

x ·
(
n⊗ aα − aα ⊗ n

)
w,α = x ·

(
(n⊗ aα − aα ⊗ n)w

)
;α
. (153)

Denoting the term in the outer parenthesis by cα, one can now show that

x · cα;α = 2w · n+ (x · cα);α , (154)

and then employ the surface divergence theorem to get∫
S
x · cα;α da = 2

∫
S
w · nda+

∫
∂S
x · cαmα ds , (155)

where mα are the components of the boundary normal. So if S is closed, or if w = 0 on ∂S,
one obtains (143) for w = ∆x.
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