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Abstract

A liquid membrane formulation is presented that is suitable to analyze liquid films and their
contact behavior. The governing strong form and weak form equations are presented in the
general framework of the curvilinear coordinate system that is used for the surface description
of the membrane. Particular emphasize is placed on the stabilization of the in-plane equilib-
rium equations, which is essential for the quasi-static description of liquid membranes. Two
new stabilization schemes are proposed that affect only the in-plane membrane behavior while
leaving the out-of-plane membrane behavior unaffected. Further emphasis is placed on the de-
scription of line contact needed to impose non-trivial contact angles. The proposed formulation
is discretized within the finite element method considering both standard Lagrange-based and
isogeometric NURBS-based finite elements. Computational contact algorithms are formulated
both for surface and line contact. The complete linearization of the discretize formulation is
given. A large range of numerical examples is presented in order to illustrate the different phys-
ical aspects that are captured by the proposed formulation. The examples are further used to
analyze the performance of the new stabilization schemes.

Keywords: computational contact mechanics, curvilinear coordinates, isogeometric analysis,
nonlinear finite element methods, rough surface contact, wetting.

1 Introduction

This work is concerned with a general computational formulation for liquid membranes. Liquid
membranes, which characterize the free surface behavior of liquids, are especially important
at small length scales where surface effects can become dominating. Some cases are always
governed by membrane behavior, irrespective of scale. Examples are droplets, bubbles and
liquid coats. The mechanics of liquid membranes is governed by the surface tension of liquids,
which is typically considered as a constant isotropic stress state. The consequence of this is
the quasi-static instability of the in-plane membrane behavior. This instability needs to be
addressed in computations. In a more general context, e.g. in the case of solid membranes,
the membrane is characterized by more general stress states. However, instabilities also exist
for solid membranes, most prominently the wrinkling instability. The membrane description
considered here is equally applicable for solid and liquid membranes, such that transitions can
be described. The focus, though, is placed on liquid membranes, proposing efficient schemes for
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their stabilization in computations and discussing their application to contact problems. One
aspect of membrane contact is the occurence of distinct angles at contact boundaries, which is
also addressed here. The numerical discretization is treated here in the framework of the finite
element method.

There is a range of earlier work on computational formulations for liquid membranes and their
contact behavior. The first finite element approach is the model by Brown et al. [1]. Their for-
mulation only considers the out-of-plane membrane behavior. This circumvents the instability
but severely restricts the range of deformation. More general are the approaches by Brakke
[2] and Iliev [3]. These are based on energy minimization but are not in the framework of a
Galerkin-type FE formulation, as is considered here. Such a formulation has also been consid-
ered by Ma and Klug [4] for the description of lipid bilayers. There, the authors propose an
in-plane stabilization based on the previous iterate, which can be viewed as algorithmic vis-
cosity. For dynamic problems, the physical viscosity and the inertia of the membrane and an
enclosed fluid will stabilize the system. Dynamic problems have been studied by Arroyo and
DeSimone [5] and Rahimi and Arroyo [6], where an axisymmetric FE implementation based on
B-splines is presented. Also the aspect of contact has been considered in earlier work: Sprit-
tles and Shikhmurzaev [7] present a FE method to describe wetting considering the bulk CFD
problem with free surface boundary conditions. In order to impose contact angles both natural
and essential boundary conditions are considered. The authors note that only the latter gives
satisfactory results. Radcliffe et al. [8] simulate the steady-state contact between droplets and
rigid obstacles based on an artificial dynamical relaxation technique that is non-FEM. In the
above formulations, contact is described by boundary conditions along the contact line. In this
case the contact surface does not need to be discretized. An alternative approach, considered
here, is to model the contact surface and consider a computational contact algorithm as is used
for solids [9; 10]. Such an approach has been proposed by Sauer et al. [11] both for solid and
liquid membranes. This formulation has several advantages over the conventional approaches as
is listed below. It is finally noted that we are interested here in an explicit surface description,
i.e. a description where the surface is discretized directly, based on surface finite elements. There
is a wide range of other approaches, indirect surface descriptions based on the bulk discretiza-
tion or non-FE approaches. Examples are embedded surface methods [12], level set methods
[13], particle methods [14], volume of fluid methods [15], spectral boundary elements [16; 17],
molecular dynamics [18], Lattice-Boltzmann approaches [19], and density functional theory [20].

Within this work several new aspects are introduced to the computational modeling of liquid
membranes: Two new stabilization schemes for liquid membranes are developed, a contact
formulation is used to describe surface contact, and, at the contact line, a new contact angle
formulation for rough substrate surfaces is developed. The new formulation is based on the weak
form of the membrane equations including the contributions for surface and line contact and
using suitable contact algorithms for both. The weak form is discretized within a Galerkin based
finite element method providing the full tangent matrix that is needed for implicit computations.
The formulation readily admits C1-smooth NURBS elements, which are also considered here.
A broad range of examples is presented in order to illustrate the range of applications and study
the accuracy of the proposed stabilization schemes for various element classes. Not discussed
here are contact angle hysteresis and sliding contact. Also, we restrict ourselves to quasi-static
conditions where there is no fluid flow, neither internally nor within the membrane surface.
These are left for future work.
There are several advantages of the proposed contact surface description:

• one can straightforwardly apply classical contact algorithms for the description of surface
contact of liquids,

2



• the setup is indispensible for the detection of new and lost contact,

• the setup is indispensible for contact between deforming bodies (liquid–solid or liquid–
liquid),

• the contact line does not need to be modeled explicitly for contact angles θc = π since
this it is determined automatically by the contact algorithm, and

• it is useful to study the dynamics of decreasing contact angles, starting from θc = π.

The proposed contact description leads to a closure of the droplet surface with has several
advantageous of its own:

• it is very helpful for the evaluation of surface integrals, e.g. to determine the enclosed
volume,

• it is required for modeling non-constant surface tension within the solid–liquid interface

• it thus allows the consideration of more general constitutive models for liquid membranes,
and

• it is useful as a boundary for flow computations of the enclosed media.

The remainder of this paper is organized as follows. Sec. 2 presents the governing strong and
weak equations for the stabilization of quasi-static liquid membranes considering surface and
line contact. The corresponding finite element formulation is then discussed in Sec. 3. A second
stabilization approach, applied at the discretized level, is also presented in Sec. 3. Sec. 4 then
presents several numerical examples that illustrate the performance of the proposed formulation
for various loading and contact cases. Finally, conclusions are drawn in Sec. 5.

2 Governing equations

This section describes the theoretical framework of the proposed liquid membrane formulation.
The problem setup is introduced, and its kinematics, constitution, surface equilibrium, stabi-
lization, line equilibrium, and strong and weak form equations are presented. The description
relies on differential geometry. For an overview of the basic relations of differential geometry,
we refer to earlier work [11].

2.1 Problem setup

We begin with discussing the general 3D setup that is considered here for liquid membranes
as they for example appear in bubbles and droplets, see Fig. 1. Here, S denotes the set of all
surface points of the liquid membrane. It contains the two subdomains SSL and SLG, marking
the solid-liquid and liquid-gas interfaces, such that

S = SSL ∪ SLG , SSL ∩ SLG = C . (1)

Here, C denotes the contact line on S that forms the interface between SSL and SLG. Further,
∂B denotes the set of all surface points of the body B, which, here, is considered as a rigid
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Figure 1: Problem setup: A liquid membrane in contact with a rigid solid.

half-space. The upper surface contains the two subdomains ∂BSL and ∂BSG that mark the
solid-liquid and solid-gas interfaces on ∂B such that

∂B = ∂BSL ∪ ∂BSG , ∂BSL ∩ ∂BSG = CB . (2)

In theory, ∂BSL = SSL and CB = C, but computationally differences may appear, e.g. due to a
penalty regularization of contact. The boundary of surface S is decomposed into displacement
and traction prescribed domains, such that

∂S = ∂uS ∪ ∂tS . (3)

Here we also require that ∂uS ∩ ∂tS = ∅, unless the prescribed displacements and tractions are
perpendicular to each other. On each subdomain, statement (3) extends to

∂SI = ∂uSI ∪ ∂tSI ∪ C , I = SL or LG , (4)

and we further have

∂uS = ∂uSSL ∪ ∂uSLG , ∂tS = ∂tSSL ∪ ∂tSLG . (5)

Points on S are described by the bases {a1,a2,n} and {a1,a2,n}, where n is the outward
surface normal, and aα and aα are the covariant and contra-variant tangent vectors of S.3

They are constructed from the parameterization of S [11]. Points on C are described by the
basis {mc, ac, nc}, where mc is tangent to ∂B and normal to ∂SSL, ac is the tangent vector
of C, and nc is the normal of ∂Bc. In theory this basis is orthogonal, but computationally this
may not be satisfied exactly as is shown later.

Large deformations are considered here such that we need to distinguish the deformed config-
uration of the membrane structure from its undeformed reference configuration. Index ‘0’ is
used to distinguish the reference sets from the current sets. Capital letters are used to dis-
tinguish reference vectors from current vectors. The displacement between the two membrane
configurations is denoted as

u = X − x , X ∈ S0 , x ∈ S . (6)

For further details of the kinematical description we refer to [11].

3Here and in the following all Greek indices run from 1 to 2, and imply summation when repeated.
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2.2 Liquid membrane constitution

According to membrane assumption, we only consider in-plane stress components such that the
stress tensor can be written as4

σ = σαβ a
α ⊗ aβ = σαβ aα ⊗ aβ = σαβ aα ⊗ aβ . (7)

For liquid membranes, under quasi-static conditions, the surface stress state is hydrostatic, i.e.

σ = γ 1 , (8)

with 1 = aα ⊗ aα = aα ⊗ aα. The constant γ is the surface tension of the interface. For a
liquid in contact, γ changes between SLG and SSL, assuming the values γLG to γSL. From (7)
and (8) follows,

σαβ = γ aαβ , σαβ = γ δαβ , σαβ = γ aαβ , (9)

where aαβ = aα · aβ, δαβ = aα · aβ and aαβ = aα · aβ are various components of the metric
tensor. This stress state looks very simple, but it leads to a major difficulty in computations:
The formulation is unstable, since the stress is independent of the deformation. At the interface
∂BSG, we also have an interface stress σ. This is also considered in form (7), where γ is now
equal to γSG, which is the isotropic surface tension of interface ∂BSG. According to Cauchy’s
formula, the membrane traction5 on the surface ⊥ aα is given by

tα = σaα . (10)

According to (8), we have tα = γ aα.

2.3 Equilibrium of liquid membranes

Membrane equilibrium is governed by the field equation [21]

tα;α + f = 0 on S . (11)

For liquids, tα is given by the relations of Sec. 2.2, but also other constitutive models can be
considered in this context. For conservative systems, (11) can be derived from a potential [22].
f denotes the body force acting on S. Here we consider the contributions

f = f f + f c + f̄ (12)

representing fluid forces, contact forces and external forces. The body force can be decomposed
as

f = fαaα + pn , (13)

where fα := fαf + fαc + f̄α is the (contra-variant) in-plane component of f and p := pf − pc − p̄
is the out-of-plane component of f .6 With this, field equation (11) can be decomposed into [11]

σαβ;β + fα = 0 (in-plane equilibrium),

σαβ bαβ + p = 0 (out-of-plane equilibrium).
(14)

4Due to the symmetry of the stress tensor σαβ = σαβ = σ α
β

5Note that, in general, tα is not the physical traction on the surface ⊥ aα, as aα is not normalized.
6The minus signs on pc and p̄ are introduced so that pc and p̄ correspond to positive pressures acting on the

outside surface of the droplet.
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For liquids, we have

σαβ;β = γ
(
aα;β · aβ + aα · aβ;β

)
(15)

according to (9). Since aα;β and aγ are perpendicular, this implies that σαβ;β = 0. Consequently,
fα = 0. Thus, if there are no external forces present,

fαf + fαc = 0 , (16)

i.e. the tangential contact forces equilibrate the tangential fluid forces. For quasi-static con-
ditions fαf and thus fαc are zero. Eq. (14.1) is therefore identically satisfied for hydro-static
conditions – regardless of the deformation. This physical instability carries over to the compu-
tational description and it therefore needs to be addressed, as is done by the two stabilization
schemes presented in Secs. 2.4 and 3.5. For liquids, the out-of-plane equation (14.2) yields

2Hγ + p = 0 , 2H := bαα , (17)

which is the well known Young-Laplace equation. If the contact surface is flat, i.e. bαα = 0, we
find (for p̄ = 0)

pc = pf , (18)

i.e. the contact pressure is equal to the inside fluid pressure. This is not true for curved contact
surfaces. For incompressible fluids, the fluid pressure pf is associated with the incompressibility
constraint. For quasi-static conditions, pf can be written as

pf = pv + ph , (19)

where
ph = ρ g · x (20)

is the (known) hydrostatic pressure and pv is the capillary pressure that remains associated
with the constraint. Here ρ is the density of the pressure causing medium, and g is the gravity
vector. The value of pv is then the (constant) datum pressure at the origin.
On the boundary, the usual Dirichlet and Neumann boundary conditions

u = ū on ∂uS ,
t = t̄ on ∂tS ,

(21)

are considered. The traction on boundary ∂tS, according to Cauchy’s formula, is given by

t = σm , (22)

where m = mαa
α is the outward unit normal of ∂tS. From (10) follows that t = mαt

α. For
liquids

t = γm . (23)

On the free boundary ∂tS, t̄ is only supported if it is parallel to the deformed membrane plane.

It is noted that liquid droplets are closed membranes that have no boundary. For uniqueness
and for symmetry reasons, it is however important to provide numerical boundary conditions.
At symmetry boundaries (cf. Fig. 1) we have a zero in-plane Dirchlet BC perpendicular to the
boundary and a zero in-plane Neumann BC tangential to the boundary.
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2.4 Liquid membrane stabilization

Due to (15), the in-plane equilibrium equation is satisfied for any γ, regardless of the deformation
of the membrane. The quasi-static description of liquid membtranes is therefore unstable. This
property leads to singular FE matrices. The FE formulation thus needs to be stabilized.
One approach is to solve the out-of-plane equation on a fixed mesh, like the spherical mesh used
by Brown et al. [1] for droplets. However, this approach is problematic for large deformations:
In some cases, the deformed droplet is not uniquely represented by the fixed mesh, so that
the problem cannot be solved anymore by that approach. Therefore the mesh needs to be
updated during deformation. Ideally this can be done by considering the in-plane equilibrium
equation. Since this equation is initially unstable, a stabilization stress is introduced that is
dependent on the in-plane deformation. To maintain the consistency with the out-of-plane
membrane behavior, this stabilization stress is formulated such that it does not affect out-of-
plane equilibrium.
In [11] a stabilization stress was proposed in the form

σαβsta = µ/J
(
Aαβ − aαβ/J2

)
. (24)

This expression follows from the incompressible Neo-Hookean material model. For simplicity,
the variant

σαβsta = µ/J
(
Aαβ − aαβ

)
(25)

is considered here. We denote this original formulation as stabilization scheme ‘A’. Parameter µ
is a stabilization parameter that needs to be chosen. It is shown in [11] and in Sec. 4.1 that the
numerical error decreases with µ. However, as µ decreases the stabilizing effect also vanishes.
In this work, two new stabilization schemes are proposed, that are much more robust and accu-
rate (and thus more efficient) than the two original schemes presented above. They also avoid
choosing a stabilization parameter. The two new schemes are both based on the stabilization
stress

σαβsta = µ/J
(
aαβpre − aαβ

)
, (26)

where aαβpre is taken from the previous load increment during computation. We denote this new
formulation as stabilization scheme ‘a’. It adds the same stiffness to the system as (25), so it
essentially has the same stabilizing effect. But it is much more accurate, since it adds much less
(unphysical) stress to the system. This is due to the fact that, usually, several load steps need

to be taken, such that the difference aαβpre − aαβ tends to be small. Parameter µ therefore does
not need to be picked particularly low. We will simply consider µ fixed at µ = γ.
As already noted, the stabilization stress is only included in the in-plane equilibrium, such
that the out-of-plane equilibrium equation, which is the only physically meaningful equation
for quasi-static liquid membranes, is not affected. The field equations for the liquid membrane
then read (

γ aαβ + σαβsta

)
;β

= 0 (in-plane equilibrium),

γ bαα + p = 0 (out-of-plane equilibrium).
(27)

Here we have accounted for the fact that fα = 0, as shown in Sec. 2.3. For comparison, we
will also examine the effect of applying σαβsta from (26) throughout, i.e. in both equations. This
approach is denoted as stabilization scheme ‘a-t’. It is shown below that scheme ‘a-t’ is much
less accurate than scheme ‘a’ (cf. Fig 6). Scheme ‘a-t’ is similar to the stabilization approach
proposed in [4].
Further, a second, even more accurate stabilization scheme based on (26) and (27) can be
constructed at the discretized level. This is presented in Sec. 3.5. This approach is denoted as
stabilization scheme ‘P’. The numerical examples of Sec. 4 show that schemes ‘a’ and ‘P’ are
very successfully in accurately describing the quasi-static behavior of liquid membranes.
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2.5 Contact line equilibrium

We now discuss the force equilibrium at the contact line C. Fig. 2 shows the line forces acting at
xc ∈ C. These are the tractions tSL = γSLmSL = γSLmc, tLG = γLGmLG and tSG = γSGmSG =

Figure 2: Equilibrium along the contact line C.

−γSGmc (due to (23)), and further, the traction qn = qnnc that is needed to balance tLG. The
equilibrium at the contact line can be written as

tSL + tLG = qc , (28)

where we have introduced the traction

qc = γSGmc + qnnc (29)

shown in Fig. 2. The two components of qc are governed by the equations

γSG = γSL + γLG cos θc ,

qn = − γLG sin θc .
(30)

Eq. (30.1) is also known as Young’s equation.

2.6 Summary: Droplet strong form

Table 1 summarizes the main equations that govern liquid membranes in strong form. In this

1. field equation, in general: tα;α + f = 0 on S
for liquids the stabilized equations (27) are considered;

2. membrane tractions: tα = σaα, t = σm

3. membrane stress: σ = σαβ aα ⊗ aβ
σαβ is given by the relations of Secs. 2.2 and 2.4;

4. contact surface constraint: gn = (x− xp) · np ≥ 0 on S

5. volume constraint: gv = V0 − V = 0

6. contact line equilibrium: tSL + tLG = qc on C

7. boundary conditions: u = ū on ∂uS and t = t̄ on ∂tS

Table 1: Summary of the strong form equations governing liquid membranes.

framework, two constrains are considered: The classical contact constraint [10]

gn = (x− xp) · np ≥ 0 on S , (31)
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where np denotes the surface normal of ∂B at the closest projection point xp ∈ ∂B of the
membrane point x ∈ S, and the volume constraint

gv = V0 − V = 0 , (32)

where V and V0 denote the enclosed volumes of S and S0.
The considered membrane model contains five physical model parameters. These are γLG, γSL,
γSG, V0 and ρg. According to Eq. (30.1), one of the γ’s can be replaced by the contact angle.

2.7 Droplet weak form

The governing strong form equations are now transformed into weak form. Here, the constraints
(31) and (32), as well as the Dirchlet BC and the constitutive relations of Secs. 2.2 and 2.4, are
considered to remain enforced in strong form. The weak form is thus constructed from equilibria
(11) and (28). Therefore, consider a virtual variation of the deformation, w, that belongs to the
set of all kinematically admissible deformationsW (i.e. w = 0 on ∂uS). Following the standard
approach, i.e. contracting (11), (21.2) and (28) by w, integrating them over their respective
domains, and summing the outcome, gives∫

S
w ·
(
tα;α + f

)
da+

∫
∂tS
w ·
(
t̄− t

)
ds+

∫
C
w ·
(
qc − tSL − tLG

)
ds = 0 ∀w ∈ W . (33)

Since

w · tα;α = wα σ
αβ

;β + w σαβ bαβ (34)

and w · tI = w · (tαI aα) = wα t
α
I on each SI , we obtain∑

I

[ ∫
SI
wα σ

αβ
I ;β da−

∫
∂SI

wα t
α
I ds

]
+

∫
S

(
w σαβ bαβ +w · f

)
da

+

∫
∂tS
w · t̄ ds+

∫
C
w · qc ds = 0 , ∀w ∈ W,

(35)

where I denotes either LG or SL. Using the divergence theorem for curved surfaces ([23], see
also [11]) and Eq. (12), this yields

Gint +Gc −Gf −Gext = 0 ∀w ∈ W , (36)

with the virtual work contributions

Gint :=

∫
S
wα;β σ

αβ da−
∫
S
w σαβ bαβ da ,

Gc := −
∫
S
w · f c da ,

Gf :=

∫
S
w · f f da ,

Gext :=

∫
S
w · f̄ da+

∫
∂tS
w · t̄ ds+

∫
C
w · qc ds .

(37)

The two terms appearing in Gint correspond to the in-plane and out-of-plane contributions. If
σαβsta = 0, they can be combined into the expression

Gint =

∫
S
w;α · σαβ aβ da , (38)
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see [11]. For the FE implementation in the following, both expressions for Gint are considered.
On the other hand, using

w · f = wα f
α + w p (39)

and w · t̄ = wα t̄
α, one can also decompose the entire weak form into in-plane and out-of-plane

contributions. This is considered in [11] for the case of C = ∅. Due to the kink at C, the split
of the entire weak form into in-plane and out-of-plane is now unsuitable.
For physical and variational consistency, the stress tensor appearing in both terms of Gint should
be identical. For liquids this is σαβ = γaαβ. However, as noted in Sec. 2.3, the (quasi-static)
in-plane behavior of liquids is unstable. We thus use the split in (37.1) to apply the stabilized
stress

σαβ = γ aαβ + σαβsta , (40)

motivated in Sec. 2.4, to the in-plane part, i.e. to the first term of Eq. (37.1). This introduces
a (small) variational inconsistency. However this inconsistency only affects the in-plane behav-
ior, which can be associated with mesh motion, but does not affect the physical out-of-plane
behavior. In the computational setting a discretization error is introduced that obstructs the
clear distinction between in-plane and out-of-plane behavior. Therefore the stabilization also
affects the physical out-of-plane behavior. This numerical error is examined in the examples of
Sec. 4. An alternative, variationally consistent stabilization procedure is proposed in Sec. 3.5
for a mesh update step that considers applying the stabilization (40) throughout (37.1).

For the following numerical examples we consider f̄ = 0. Thus for hydrostatic conditions,
fαc = 0 and fαf = 0, and eqs. (37.2), (37.3) and (37.4) can be simplfied using (39). In summary,
the problem of Tab. 1 has thus been rewritten into the statement

G(x,w, pc, pv) = Gint(x,w) +Gc(x,w, pc)−Gf(x,w, pv)−Gext(x,w) = 0 ∀w ∈ W

gn(x) ≥ 0 ∀x ∈ S

gv(x) = 0

u = ū on ∂uS
(41)

that now governs the unknown membrane configuration x ∈ S. Here, contact constraint (41.2)
is still enforced pointwise ∀S. If desired, one can also rewrite this equation in integral form.

3 Finite element discretization

The governing set of equations (41) are solved by the finite element (FE) method. Since they are
composed solely by integrals over the droplet surface S, only this domain needs to be discretized.
A Lagrangian FE description is considered, where we denote a finite element of the reference
configuration by Ωe

0, and its counterpart in the current configuration by Ωe. This discretization
leads to an approximation of the geometry, denoted Sh0 and Sh.

3.1 Finite element interpolation

The element configurations Ωe
0 and Ωe are defined by the interpolation

Xh = NXe , Xh ∈ Ωe
0 ⊂ Sh0 , (42)

and
xh = Nxe , xh ∈ Ωe ⊂ Sh , (43)
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where N := [N1I3, ..., NII3, ...] is a (3×3nne) array of the nne shape functions NI = NI(ξ
1, ξ2)

of element Ωe. I3 is the usual identity tensor in R3. The vectors

Xe =


X1

X2

...

Xnne

 and xe =


x1

x2

...

xnne

 (44)

contain the nodal positions for the element. In the following examples, 9-noded quadrilateral
elements are used based on Lagrange [24] and NURBS interpolation [25]. These elements can
be conveniently related to a master element in the parameter domain ξα ∈ [−1, 1].
From (43) follows that

ahα = N,α xe . (45)

The variation w is discretized in the same way as x, i.e.

wh = Nwe . (46)

In the following we omit superscript h, but imply that all quantities are approximate quantities
related to Sh and Sh0 .

3.2 Discretized weak form

With approximations (42) – (46) the weak form (41.1) can be written as

G =

nel∑
e=1

Ge , (47)

where
Ge = wT

e

[
f eint + f ec − f ef − f eext

]
, (48)

is the contribution from element Ωe. Here we have identified the elemental internal force vector

f eint =

∫
Ωe

NT
,α σ

αβN,β daxe , (49)

according to (38), the elemental contact force vector

f ec = −
∫

Ωe
NT fαc aα da+

∫
Ωe

NT pcnda , (50)

according to (37.2), and the elemental force vectors due to the fluid forces,

f ef =

∫
Ωe

NT fαf aα da+

∫
Ωe

NT pf nda , (51)

and the external forces,

f eext =

∫
Ωe

NT f̄α aα da−
∫

Ωe
NT p̄nda+

∫
Γet

NT
t t̄ds+

∫
Γec

NT
t qc ds , (52)

according to (37.3) and (37.4). Here Γet ⊂ ∂tS and Γec ⊂ C denote the line elements along the
Neuman boundary ∂tS and interface C. Nt is the corresponding array of shape function – for
quadratic elements a (3×9) array. In the examples of Sec. 4, we consider quasi-static conditions
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(with fαf = 0) without external domain forces (f̄α = 0, p̄ = 0) and Neumann tractions (t̄ = 0).
In this case frictional contact forces are not supported, so that fαc = 0.
As an alternative to (49), we can split f eint into its in-plane and out-of-plane contributions

f einti =

∫
Ωe0

σαβ
(
NT
,αN,β + NT (n⊗ n)N,αβ

)
daxe ,

f einto = −
∫

Ωe0

σαβNT (n⊗ n)N,αβ daxe ,
(53)

such that f eint = f einti + f einto. This follows from (37.1) as is shown in [11]. It is noted that the
implementation of (49) is more efficient than that of (53). This can be seen from the expressions
of the tangent matrix, given in App. A. As long as the stress σαβ is not treated differently within
(53.1) and (53.2), as is the case in stabilization scheme (40), expression (49) should therefore
be preferred in computations.

The original weak form (41.1) now yields the discretized version

wT
[
fint + fc − ff − fext

]
= 0 , ∀w ∈ Wh . (54)

Together with the two constraints, this yields the following set of equations to be solved at the
free nodes7 for the unknown discrete deformation x and pressures pc, pf :

f(x, pc, pf) := fint(x) + fc(x, pc)− ff(x, pv)− fext(x) = 0 ,

gn(x) ≥ 0

gv(x) = 0

(55)

The contact pressure pc, which serves as a Lagrange multiplier to (55.2), can also be discretized
within the FE setup. Here we will consider a penalty regularization that is discussed in Sec. 3.3.
The discretization of the volume constraint (55.3) is discussed in [11]. Since system (55) is
nonlinear, the Newton-Raphson scheme is used for its solution. The corresponding tangent
matrices are given in Appendix A.

3.3 Contact penalty regularization

The contact pressure is determined here by a penalty regularization, i.e. we consider

pc =

{
−εn gn , gn < 0 ,
0 , gn ≥ 0 ,

(56)

where gn is the normal gap defined in (31) and εn denotes a chosen penalty parameter. This
eliminates unknown pc and Eq. (55.2) from the above system.

3.4 On the application of the line load qc

The contact line C is discretized by the line elements Γec (giving Ch). The FE forces on those,
due to line load qc, are

f eextC =

∫
Γec

NT
t qc ds . (57)

7i.e. the remaining nodes after applying the discretized Dirichlet BC xI = x̄I for nodes I on ∂uSh.
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The basis {mc, ac, nc} (cf. Fig. 1), required to characterize qc, is determined as follows: The
tangent vector ac follows from parameterization (43), which now simplifies to

xc = Nt xe , xc ∈ Γec ⊂ Ch . (58)

Thus

ac =
∂xc

∂ξ
= Nt,ξ xe . (59)

Given ac, one can evaluate ds = ‖ac‖ dξ in order to integrate (57) over ξ ∈ [−1, 1]. The surface
normal nc is defined by the known substrate surface ∂B that is treated as rigid here. During
computations, nc is determined by a closest point projection of xc onto ∂B. Given ac and nc

we can determine mc from

mc =
ac × nc

‖ac × nc‖
. (60)

We note that ac is orthogonal to nc as Fig. 1 shows. But this is only true at the final solution
and not necessary during the numerical procedure that takes us there. We therefore cannot
assume ac ⊥ nc when deriving the tangent matrix of f eextC ; see Appendix A.

3.5 Stabilization of liquid membranes

We now discuss the computational adaption of the stabilization schemes introduced in Sec. 2.4.
Two different approaches are proposed:

First approach: Following description (27), the internal force in (55), f eint, is now replaced by

f eint,stab = f eint(σ
αβ
liq ) + f einti(σ

αβ
sta) , (61)

where σαβliq := γ aαβ. Depending on the formulation of σαβsta, this idea is denoted as scheme ‘A’
or scheme ‘a’. For comparision we also examine the scheme

f eint,stab = f eint(σ
αβ
liq + σαβsta) , (62)

based on (26). This is then denoted as scheme ‘a-t’.

Second approach: An different stabilization scheme is given by the following two-step proce-
dure. We first solve (55) considering expression (62) in order to update the FE mesh. We then
solve the physically correct problem with

f eint,unstab = f eint(σ
αβ
liq ) (63)

inside (55). Since this is unstable, i.e. the stiffness matrix

K =
∂f

∂u
(64)

is singular, the linearized system (at load step k + 1)

f(uk+1) ≈ f(uk) + K(uk) ∆uk+1 = 0 (65)

needs to be reduced to a stable subsystem. This can be achieved by considering the reduction

ured = Pu , (66)
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where P denotes the projection matrix

P :=


nT1 0T · · · 0T

0T nT2 · · · 0T

...
...

. . .
...

0T 0T · · · nTnno

 (67)

that is based on the surface normal nI at the FE nodes (or control points, respectively) xI ,
I = 1, ..., nno. ured thus only contains the normal components of u. With this, system (65) is
reduced to

Kred ∆ured = −fred , with Kred = PKPT , fred = Pf , (68)

which is stable. Once ured is found, u is determined from u = PTured. Since this solution
only provides an update in the out-of-plane direction, the preceding step for the mesh update is
required to provide tangential updates of u. In principle, such an update will not be required at
every load step. For Lagrange FE, the interpolation is not C1-smooth at the element boundaries.
In this case the normals are defined by averaging the normal of adjacent elements. For NURBS
FE, the interpolation may be C1 everywhere, but the control points do not lie on the surface.
One can then project them onto the surface to obtain a corresponding normal. This would need
to be done at every load step, due to the deformation. It turns out that this is unnecessary,
since the scheme works very well for an approximation of nI . For efficiency, we will therefore
only compute the projected control points in the initial configuration, and then evaluate nI at
those locations (convected to the current configuration). During computations we take nI from
the previous step, to avoid further linearizing (68). The second stabilization scheme is denoted
as scheme ‘P’.

4 Numerical examples

This section presents six examples that focus on the various aspects of the proposed formulation
and thus demonstrate the capabilities of the presented FE model. The examples are also used
to assess the four stabilization schemes given in Sec. 3.5. Both quadratic Lagrange elements
and quadratic NURBS-based elements are considered.

4.1 Surface curvature example: Stretched liquid film

The first example considers a liquid film stretched between two rigid rings. Contributions Gc,
Gf and Gext are considered to be zero in (41), such that the film is only governed by the surface
curvature term. The rings have radius L0. The free liquid film has one liquid-gas interface
on each side such that the membrane surface tension is γ = 2γLG. Due to symmetry, only
1/8 of the problem is modeled computationally, considering an initial width of H = 0.1L0.
Fig. 3 shows this reference configuration, which itself is not in equilibrium. To stretch the
film, a displacement ū is applied such that the final width is h = H + ū. For low values of ū
(Fig. 3b) the film forms a meniscus. The analytical solution of this meniscus can be obtained
from variational calculus (by minimization of the surface area) as

r(y) = c cosh
y

c
, (69)
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a. b. c.

Figure 3: Stretched liquid film: a) Reference configuration; b) configuration for ū = 0.5L0; c)
configuration for ū = 0.9L0.

where the constant c = r(0) is obtained from the condition r(h) = L0. The surface area is then
given by

a =

∫
S

da = 4π

∫ h

0
r
√

1 + r′2 dy = 2π c
(
h+ c sinh

h

c
cosh

h

c

)
, (70)

and the enclosed volume becomes

V = 2

∫ h

0
π r2 dy = π c2

(
h+ c sinh

h

c
cosh

h

c

)
. (71)

For large values of ū the configuration shown in Fig. 3c is energetically more favorable. It is
possible to obtain that solution computationally with quadratic Lagrange elements. This is
quite remarkable as several elements have degenerated into lines, as the figure shows. This
second solution is characterized by the area a = 2π L2

0.

As Fig. 4 shows, the computational result follows the analytical result (70) up to ū = 0.69L0,
and then abruptly switches to the result a = 2π L2

0. According to theory, the stress state within

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

prescribed displacement  u   [L
0
]

su
rf

ac
e 

ar
ea

   
[L

02 ]

 

 

FE result
analytical result
π/2 * u
π/4

a. b.

Figure 4: Stretched liquid film: a) surface area (×1/8) vs. prescribed deformation h = H + ū;
b) computational surface tension error |(σαα − 2γ)| for N2 ‘P’ at ū = 0.5L0.

the membrane is constant, see Sec. 2.2. Using a standard stress recovery scheme8 this stress

8based on least square minimization between interpolated and quadrature point stresses [26]
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state is recovered to machine precision as Fig. 4b shows. This is also the case for all the following
examples.

Next, we examine the computational accuracy of the meniscus shape for the four different
stability formulations, ‘A’, ‘a’, ‘a-t’ and ‘P’, introduced earlier. We therefore look at the L2-
error norm between the FE result and the analytical result (69). Two different FE types are
considered: quadratic Lagrange (L2) and quadratic NURBS (N2) elements. Fig. 5 shows the
convergence w.r.t. the mesh discretization. This figure shows that the N2 discretization is much
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Figure 5: Stretched liquid film: L2-error of the film shape in dependence of a) FE nodes and b)
element number. For scheme ‘P’ nt = 50 load steps have been used; for scheme ‘a ’ nt = 1000
steps are used for L2 and nt = 100 for N2 FE. For scheme ‘A’ µ = 0.1 γ; otherwise µ = γ.

more accurate than the L2 discretization. This is attributed to the fact that a C1-continuous
surface allows a much more accurate definition of in-plane and out-of-plane directions. It is
further seen that the new stabilization schemes proposed in this work – ‘a’ and ‘P’ – perform
best and are of similar accuracy. The old scheme, ‘A’, is the least accurate, but it still converges.
For N2 finite elements ‘A’ is still as accurate as the best L2 cases.

Fig. 6 shows the convergence w.r.t. the temporal discretization nt (i.e. the number of load
steps). This figure shows that schemes ‘a’ and ‘a-t’ improve with nt. Scheme ‘P’, on the other
hand, does not show this property. For small nt, it even increases with nt. However, for small
nt, the overall solution scheme may not converge anymore so that this advantage may not be
exploited in general. Due to this, we can argue that schemes ‘a’ and ‘P’ are equally accurate,
which is why we will mostly focus on those two schemes in the following examples. Fig. 6b
confirms earlier findings [11]. In all cases the convergence saturates at the mesh error, which,
for nel = 52 elements, lies around 10−5.

4.2 Pressure example: Inflated liquid film

The second example extends the previous example by surface pressure (term Gf) and the cor-
responding volume constraint. Due to their superiority, we now only consider schemes ‘a’ and
‘P’. Both quadratic Lagrange and quadratic NURBS FE are used. We consider the configu-
ration of Fig. 3b and inflate it as shown in Fig. 7. The volume of this starting configuration
is V0 ≈ 2.61L3

0, according to (71). During inflation the liquid membrane attains two special
solutions: a cylinder with radius rC = L0 and volume VC = 1.2πL3

0 and a capped sphere with
radius

rS =
√

1 + 0.62L0 (72)
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Figure 6: Stretched liquid film: L2-error of the film shape in dependence of a) the number of
load steps, and b) stability parameter µ. Here nel = 52. The solution according to scheme ‘A’
does not depend on nt.

a. b. c. d. e.

Figure 7: Inflated liquid film: Configuration for a prescribed volume of a) V = VA, b) V = V0

(initial configuration), c) V = VC, d) V = VS and e) V = VB.

and volume
VS = 4π/3r3

S − πaS(1 + a2
S/3) , with aS = rS − 0.6L0 . (73)

At these two configurations the pressure is know analytically as pC = γ/rC and pS = 2γ/rS,
which is used in the following to analyze the numerical error. Computationally an inflation up
to VB = 16L3

0 has been considered. Deflation can also be considered. The computations run
robustly up to about VA = 1.12L3

0. The pressure-volume curve for the inflation and deflation
process is shown in Fig. 8.

Next, we examine the computational error in the pressure for V = VC and V = VS, defined
as |1 − ph/p|. This is shown in Figs. 9 and 10. The convergence behavior for decreasing mesh
size (Fig. 9) is similar to that of the previous example. Again N2 FE are more accurate, while
schemes ‘a’ and ‘P’ are quite close. The convergence behavior for decreasing load steps (Fig. 10)
shows that scheme ‘a’ decreases, while scheme ‘P’ remains unaffected. For N2 FE, scheme ‘a’
can beat scheme ‘P’ for a very high number of load steps.
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Figure 9: Inflated liquid film: relative pressure error in dependence of the FE nodes / control
points for: a) V = VC; b) V = VS. Here nt = 100 for L2 ‘a’ and 50 for all other schemes.

4.3 Surface contact example: Droplet under gravity

The third example includes surface contact (including term Gc and the corresponding contact
constraint). For that we consider contact between a liquid, incompressible droplet and a flat
surface due to gravity, taking a contact angle of θc = 180◦ and considering the case γSL−γSG =
γLG := γ. Fig. 11 shows the initial configuration (a sphere with radius R0) and the deformed
configuration. Gravity acts on the internal medium leading to hydrostatic pressure (20). Here,
we consider g = −[0, 0, g]T with ρg = 2γ/R2

0. This loading is applied in nt load steps. The
penalty method (56) is used for contact. We consider stability schemes ‘A’, ‘a’ and ‘P’ for L2
and N2 finite elements. Scheme ‘A’ is included here, since a similar scheme is used for this
problem in [11]. The meshes for both L2 and N2 discretizations look as is shown in Fig. 11.
Four patches are used for the N2 discretization. It is noted, that during deformation, the N2
discretization is not C1-continuous anymore at the patch boundaries. The contact surface of
the droplet is shown in Fig. 11b. The contact pressure is constant and (as noted in (18)) equal
to the internal fluid pressure at the bottom, which is pf = 3.571 γ/R0. The radius of the contact
surface thus is rc =

√
4/3R3

0 ρg/pf = 0.864R0, which agrees with the computational result.
Tab. 2 shows the computational parameters considered for the different FE meshes. For scheme
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Figure 10: Inflated liquid film: relative pressure error in dependence of the number of load steps
nt: a) V = VC; b) V = VS. Here nel = 52.

a. b.

Figure 11: Droplet contact for θc = 180◦: a) initial configuration with boundary and symmetry
conditions, considering nel = 96 quadratic Lagrange (L2) FE; b) deformed configuration for
ρg = 2γ/R2

0.

‘a’, nt = 10m, for the other schemes, nt = 10 steps have been used for all meshes. The mesh for
m = 64 is used as an accurate reference result for the convergence plots shown in Fig. 12. Here
the error in the fluid pressure pf (Fig. 12a) and the contact penetration (Fig. 12b) is shown. The
second figure essentially shows the closing of the contact gap with increasing penalty parameter.
Fig. 12a shows that the N2 results are not always better that the L2 results, as is the case in the
previous examples. Also the accuracy ordering ‘P’-‘a’-‘A’ is not always observed here either.
It is further seen that the error does not decrease monotonically. The reason for this outcome
is (most likely) caused by the contact boundary, where an active set change of single contact
quadrature points can make a large difference.9 In the contact example of Sec. 4.4 this problem
is absent.

93× 3 contact quadrature points are considered per element.
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m nel = 6m2 nno L2 nno N2 εn = 250m2γ/R0

1 6 33 28 250
2 24 113 60 1000
4 96 417 160 4000
8 384 1601 504 16000

16 1536 6273 1768 64000
32 6144 24833 6600 256000
64 24576 98817 25480 1024000

Table 2: Droplet contact: computational parameters (number of elements nel, number of nodes
nno and contact penalty parameter εn) for the quarter mesh of Fig. 11a.

10
1

10
2

10
3

10
4

10
5

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

number of nodes / control points

er
ro

r 
of

 th
e 

F
E

 p
re

ss
ur

e

  

 

 

L2 stabil. A
L2 stabil. a
L2 stabil. P
N2 stabil. A
N2 stabil. a
N2 stabil. P

10
1

10
2

10
3

10
4

10
5

10
−5

10
−4

10
−3

10
−2

10
−1

number of nodes / control points

er
ro

r 
of

 th
e 

F
E

 p
en

et
ra

tio
n

  

 

 

L2 stabil. A
L2 stabil. a
L2 stabil. P
N2 stabil. A
N2 stabil. a
N2 stabil. P

a. b.

Figure 12: Droplet contact for θc = 180◦: a) error of the internal pressure in dependence of the
number of nodes/control points; b) contact penetration error at the center.

4.4 Line contact example: Attached liquid droplet

The fourth example considers the previous setup and includes distinct contact angles (θc < 180◦)
by including contribution (57) in the weak form. In this case we have both line and surface
contact. The following three cases are studied:

1. Application of qc: One way to obtain the final solution is by a step-wise application
of the line load qc, as is shown in Fig. 13. Once the full load is applied, we get the desired
(physical) solution, here for θc = 90◦ and zero gravity (ρg = 0). Without gravity the droplet
shape is spherical, such that the pressure can be computed analytically, and used to evaluate
the numerical error, which is done in Fig. 14. Given the initial droplet volume V = 4π R3

0/3
and the contact angle θc, the inside pressure is

p = 2γ/r , (74)

where r is the radius of the current sphere, given as

r = (1− f(θc))
−1/3R0 , (75)

with
f(θc) = (2 + 3 cos θc − cos3 θc)/4 . (76)

The error plots of Fig. 14 show the convergence behavior for increasing spatial and ‘temporal’
refinement, considering stability schemes ‘a’ and ‘P’ for L2 and N2 elements. At the contact line
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Figure 13: Droplet contact for θc = 90◦: Intermediate configurations for {1/4, 1/2, 3/4, 1}×qc.
The contact surface during this transition is determined by a contact algorithm based on (56).
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Figure 14: Droplet contact for θc = 90◦: Pressure convergence with increasing spatial (a. with
nt = 20) and ‘temporal’ resolution (b. with m = 4). The parameters of Tab. 2 are used.

C, no unique surface normal exists, so that it becomes necessary to revisit stabilization scheme
‘P’. One possibility is to consider an averaged normal within (67). However, this turns out to
be inaccurate. It also ignores the physical situation at C: Due to the surface kink, the liquid
membrane is naturally stabilized in the two out-of-plane directions of the adjacent surfaces. An
instability therefore only remains along C. We thus modify the projection matrix into

P :=



. . .
. . .

...
...

. . .

. . .
. . . 0T 0T · · ·

· · · 0T nTI− 0T · · ·

· · · 0T nTI+ 0T · · ·

· · · 0T 0T
. . .

. . .

. . .
...

...
. . .

. . .


∀xI ∈ Ch , (77)

where nI− and nI+ denote the normals of the two adjacent surfaces at node xI ∈ Ch. This
procedure yields the excellent accuracy shown in Fig. 14.10 In this example scheme ‘P’ performs
much better than scheme ‘a’. For scheme ‘a’, the pressure does not even improve with mesh
refinement. Comparing the L2 and N2 discretization, one can find slightly better results for N2.
Since the difference is not large, we use L2 elements for the following two cases.

10In this example the projection step of scheme ‘P’ is only applied once at the end.
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2. Varying θc: Given the previous solution (Fig. 13), we now consider varying the contact
angle θc that defines the direction of qc according to (30). This is shown in Fig. 15. The

Figure 15: Attached liquid droplet: Contact angle transition, θc = 150◦, 120◦, 60◦, 30◦ (left to
right), starting from θc = 90◦ (Fig. 13).

accuracy of these solutions is studied in Fig. 16. It is seen that scheme ‘P’ follows the exact
solution (74) much closer than scheme ‘a’, even though larger load steps are taken (5◦ vs. 2◦).
On the other hand, scheme ‘a’ runs more robustly for this problem: scheme ‘P’ is only able to
cover the range 25◦ ≤ θc ≤ 95◦ from the starting value 90◦, while scheme ‘a’ is able to cover the
entire range. A difficulty in scheme ‘P’ is the mesh update in the vicinity of C, which is seen
more clearly in the next test case.
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Figure 16: Attached liquid droplet: Pressure dependence on the contact angle for various
stabilization schemes. The mesh data for m = 4 is taken (see Tab. 2).

3. Increasing the gravity loading: The last case considers increasing the fluid load ρgR2
0/γ,

which can be viewed as increasing the body force ρg, decreasing the surface tension γ, or
increasing the scale R0. An example is shown in Fig. 17. Since θc is fixed, the line force
qc remains unchanged (for fixed R0). But the overall force exerted along C increases since C
stretches as the fluid load increases. Fig. 17 shows that the FE mesh deforms strongly in the
vicinity of C. This can affect the robustness of scheme ‘P’. Therefore we restrict ourselves to
scheme ‘a’ in the remaining two examples.

4.5 Curved surface contact example: Attached liquid film

In the previous two examples contact with flat surfaces was considered. To generalize this
setting, we now consider contact with a curved surface. As an example we consider contact
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Figure 17: Attached liquid droplet: Gravity sweep for θc = 120◦ and ρg = {1, 4, 8, 16} γ/R2
0

(left to right). The case for θc = 120◦ and ρg = 0 is contained in Fig. 15.

between a liquid sheet and a single asperity, defined by

z(r) = z0 exp
(
− r2

h2

)
, r2 = x2 + y2 . (78)

The computational setup for the liquid film and the asperity geometry are shown in Fig. 18.
The film is modeled as a flat sheet with dimension 4L0 × 4L0, located at z = L0. The outer

a. b.

Figure 18: Attached liquid film: a) computational setup (quarter system); b) asperity surface.

boundary is considered fixed. Due to symmetry only a quarter of the system is modeled –
considering appropriate symmetry boundary conditions along the center lines. 64 L2 finite
elements, stabilized by scheme ‘a’, are used to discretize the quarter sheet. Various contact
angles will be considered by applying the line load qc along the bold line marked in Fig. 18.
This choice for C leads to a degenerated mesh in the deformed configuration, as is shown below.
This is chosen deliberately in order to test the FE formulation. For the asperity we consider
z0 = L0 and h = 0.85L0. The surface tension of the free liquid sheet is taken as γLG = γ/2,
for the substrate surface we consider γSL − γSG = γ/2. The contact penalty parameter is taken
as εn = 16000 γ/L2

0. First, a contact angle of θc = 90◦ is applied by increasing qc (as in the
example of Fig. 13). Then θc is varied as in the example of Fig. 15. We thus obtain the
(deformed) configurations shown in Fig. 19. Due to the chosen penalty regularization, some
FE penetrate into the asperity. This leads to the visualization artefacts shown in the figure.
Very large mesh degeneration occurs along the contact line, due to the initial choice of the
contact line. This does not lead to any computational difficulties here. A different choice, as
well as remeshing procedures, will get rid of the mesh degeneration. The examples show that
large changes occur between 90 and 87 degrees, which lie in the nature of this problem. In
principle, a specific combination of surface roughness and contact angle parameters may lead to
instabilities in computations that would require continuation, e.g. arc-length, methods. Overall
it may be said that the proposed FE formulation handles this example, involving curved surface
contact, nicely.
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Figure 19: Attached liquid film: Contact angles θc = 120◦ (left), 90◦ (middle), 87◦ (right).

4.6 Coupled contact example: Immiscible contact between two droplets

The last example considers contact between two immiscible liquid films. The example consists
of a spherical droplet with initial radius R0 that sits on top of a spherical droplet with initial
radius 2R0. The bottom droplet is in contact with a rigid plane. The media inside both
droplets is incompressible, but only the upper droplet is affected by gravity in this example.
In this setting, the lower droplet may also be viewed as a bubble filled by an incompressible
gas. The surface tension of the various interfaces is chosen as follows: droplet-gas: γDG = γ,
droplet-bubble: γDB = 3γ/2, bubble-gas: γBG = γ/2, bubble-substrate: γBS − γSG = γ/2. In
consequence, the surface tension within all finite elements is γ and all contact angles remain
180◦. The deformation of the two droplets, for various values of ρg, is shown in Fig. 20. The

Figure 20: Droplet-droplet contact: Contact deformation for ρg = {0.5, 1.2, 2.0}γ/R2
0 (left to

right) considering θc = 180◦.

computational setup and boundary conditions are similar to those considered in the example
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of Fig. 11. Modeling only a quarter of the system, 96 L2 elements are used to discretize the
droplet, and 384 L2 elements are used to discretize the bubble. Stabilization scheme ‘a’ is used.
The contact between the two defoming surfaces is computed according to the two-half-pass
algorithm [27]. Therefore, a contact penalty parameter of εn = 1000γ/R0 is chosen. The right
hand side of Fig. 20 shows that the finite elements on the contact surface are stretched strongly.
But note that this does not have any physical meaning, as the in-plane mesh deformation is
unrelated to the constant stress state of liquid membranes. The proposed membrane contact
formulation also handles this last example without any difficulties.

5 Conclusion

This paper presents a new and general computational formulation for the analysis of liquid
membranes and their contact behavior. The formulation is based on a general theoretical
description in the framework of membrane theory in curvilinear coordinates. Two new stabi-
lization schemes, denoted schemes ‘a’ and ‘P’, are proposed in order to circumvent the in-plane
instability for quasi-static conditions. The new schemes are compared to two older schemes,
that are denoted schemes ‘A’ and ‘a-t’. Suitable conditions to describe both surface and line
contact are formulated. The governing equations are presented both in strong and weak form.
The discretization of the latter is derived in the framework of Galerkin-type finite elements.
Particular attention is placed on the discretization of the contact line load and the stabilization
schemes. The formulation admits isogeometric FE discretizations, which are considered here.
Altogether six numerical examples are studied to test various aspects of the proposed liquid
membrane formulation. These are surface curvature, surface pressure, surface contact, line con-
tact, curved surface contact and coupled contact.
The examples demonstrate that the formulation is able to handle all these aspects accurately,
robustly and efficiently. They show that scheme ‘P’ tends to be more accurate than scheme ‘a’,
which in turn is more accurate than schemes ‘a-t’ and ‘A’. However, scheme ‘a’ behaves more
robust for contact lines than the current version of scheme ‘P’. The examples further show that
NURBS-based isogeometric FE tend to be more accurate than Lagrange FE.
Even though a large range of applications are captured by the current formulations, there are
still more aspects that should be examined in future work. These are a deformable substrate
body B, algorithms for contact angle hysteresis, contact pinning (i.e. stiction) and sliding, an
improvement of stabilization scheme ‘P’, liquid-liquid contact with line contact, and the fluid
flow within the membrane film and the enclosed media. Some aspects are addressed in the
theoretical work of Sauer [22]. But corresponding computational formulations are still lacking
in this framework.

A Finite element linearization

In order to employ the Newton-Raphson scheme, system (55) needs to be linearized, leading to
the tangent matrix of the system. Some aspects of this have been discussed in [11], and so we
will only provide details for the new parts. In [22] we have discussed the linearization for the
continuous case, disregarding the discretization. Therefore some of the following results can be
obtained by discretizing the linearization of [22], simply by discretizing the changes ∆x and
∆aα appearing in the continuous setting by ∆xh = N∆xe and ∆ahα = N,α ∆xe according to
(43) and (45).
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A.1 Tangent matrix associated with f eint

We first take a look at the contribution coming from the internal virtual work. This leads to the
elemental force f eint that can be split according to (53). Before deriving the tangent associated
with the split, we summarize the tangent for f eint derived in [11].
The linearization of the stress ταβ = Jσαβ is characterized by the change [22]

∆ταβ = cαβγδ aγ ·N,δ ∆xe . (79)

For the liquid model in (9) one finds

cαβγδ = γJ
(1

a

(
eαγeβδ + eαδeβγ

)
− aαβaγδ

)
, (80)

where a = det[aαβ] and [
eαβ
]

=

[
0 1
−1 0

]
(81)

is the unit alternator. For the stabilization formulations in (25) and (26), one obtains

cαβγδ = µ
(

2aαβaγδ − 1

a

(
eαγeβδ + eαδeβγ

))
. (82)

Based on this, the change of f eint can be written as

∆f eint =
(
kemat + kegeo

)
∆xe , (83)

where

kemat =

∫
Ωe0

cαβγδNT
,α (aβ ⊗ aγ)N,δ dA (84)

is the material tangent matrix and

kegeo =

∫
Ωe0

NT
,α τ

αβN,β dA (85)

is the geometric tangent matrix [22]. They are both symmetric.
Now, in case of decomposition (53), we need to linearize both f einti and f einto. For the out-of-plane
contribution we find

∆f einto = −
∫

Ωe0

∆ταβNT (n⊗ n)aα,β dA−
∫

Ωe0

ταβNT (∆n⊗ n+ n⊗∆n)aα,β dA

−
∫

Ωe0

ταβNT (n⊗ n)Nα,β dA∆xe .
(86)

It can be shown that [10]
∆n = −aα (n ·∆aα) . (87)

We can thus write
∆f einto = keinto ∆xe (88)

with

keinto = −
∫

Ωe0

cαβγδ bαβN
T (n⊗ aγ)N,δ dA+

∫
Ωe0

ταβ bαβN
T (aγ ⊗ n)N,γ dA

+

∫
Ωe0

ταβ ΓγαβN
T (n⊗ n)N,γ dA−

∫
Ωe0

ταβNT (n⊗ n)N,αβ dA ,
(89)
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where Γγαβ := aγ · aα,β are the Christoffel symbols. For an efficient implementation the sums
should be multiplied-out as far as possible. E.g. for the stabilization scheme ‘a’ one can find

cαβγδ bαβ = 2µ bγδ (90)

with the help of the identity

bαβ = 2H aαβ − κ bαβinv , 2H = bαα , κ =
det[bαβ]

det[aαβ]
, (91)

which is a consequence of the Cayley-Hamilton theorem [21]. Here, bαβinv are the contra-variant
components of the inverse curvature tensor. Given (83) and (88), the change of the in-plane
internal force vector is obtained as ∆f einti = ∆f eint −∆f einto.

A.2 Tangent matrix associated with f ec

The surface contact forces, captured by f ec , can be computed by standard 3D contact algorithms
[9; 10]. In the examples here we have considered the unbiased two-half-pass contact algorithm
of Sauer and De Lorenzis [27]. The line contact forces are treated here as external forces which
are discussed in Sec. A.4 below.

A.3 Tangent matrix associated with f ef

For hydrostatic conditions, considered here, fαf = 0 and only the pressure pf remains in (51).
The linearization of this force then gives

∆f ef =

∫
Ωe

NT∆pf nda+

∫
Ωe

NT pf ∆(nda) , (92)

with
∆pf = ∆pv + ρ g ·∆x (93)

according to (19) and (20). Isolating ∆xe and ∆pv gives

∆f ef = kef ∆xe + lef ∆pv , (94)

with

kef =

∫
Ωe
ρNT n⊗ gNda+

∫
Ωe
pf N

T
(
n⊗ aα − aα ⊗ n

)
N,α da (95)

and

lef =

∫
Ωe

NT nda , (96)

see [11].

A.4 Tangent matrix associated with f eext

The loading f̄α, p̄ and t̄ are considered zero here. The remaining contributions to external force
f eext is therefore only the line contact force vector qc. We thus have

∆f eext =

∫ 1

−1
NT

t

[
∆qc ‖ac‖+ qc ∆‖ac‖

]
dξ , (97)
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with
∆qc = γSG ∆mc − γLG sin θc ∆nc , (98)

according to (29), and
∆‖ac‖ = āc ·∆ac , āc := ac/‖ac‖ , (99)

since ‖ac‖ =
√
ac · ac. Here,

∆ac = Nt,ξ ∆xe , (100)

according to (59). The two pieces appearing in (98) are

∆nc =
∂nc

∂xc
Nt ∆xe , (101)

since ∆xc = Nt ∆xe according to (58), and

∆mc =
(
I −mc ⊗mc

)∆(ac × nc)

‖ac × nc‖
, (102)

according to (60). For the evaluation of ∆mc we need

∆ac × nc = ‖ac × nc‖
(
mc ⊗ ac − ac ⊗mc

)
∆ac ,

ac ×∆nc = ‖ac × nc‖
(
mc ⊗ nc − nc ⊗mc

)
∆nc .

(103)

Here {ac, nc} are the contra-variant basis vectors that correspond to the co-variant basis
{ac, nc}. With this we find

∆mc = −(ac ⊗mc) ∆ac − (nc ⊗mc) ∆nc , (104)

since mc ⊥ ac and mc ⊥ nc. Combining all pieces, we thus obtain

∆f eextC = keextC ∆xe , (105)

with

keextC =

∫ 1

−1
NT

t

(
qc ⊗ āc − ‖ac‖ac ⊗ qm

)
Nt,ξ dξ

−
∫ 1

−1
NT

t

(
nc ⊗ qm + γLG sin θc I

)∂nc

∂xc
Nt ‖ac‖ dξ

(106)

and qm := γSGmc. The derivative ∂nc/∂xc depends on the definition of surface ∂B. It is zero
on flat surfaces, so that the second term in keextC only appears for curved substrate surfaces.
E.g. for a sphere with radius R centered at x0 we have nc = (xc − x0)/‖xc − x0‖ so that

∂nc

∂xc
=

1

‖xc − x0‖

(
I − nc ⊗ nc

)
. (107)

A.5 Tangent contributions associated with gv

The volume constraint gv appearing in (55) depends on the current volume. Its change can be
written as [11; 22]

∆gev = hev ∆xe , (108)

with

hev = −1

3

∫
Ωe
n ·Nda− 1

3

∫
Ωe
x ·
(
n⊗ aα − aα ⊗ n

)
N,α da . (109)

If the surface S is closed or if w = 0 on ∂S, this can be rewritten into

hev = −
∫

Ωe
n ·Nda (110)

[22], so that hev = −lef
T .
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A.6 Combined FE tangent matrix

All the changes affecting (55) can be combined into the statement[
∆f e

∆gev

]
= ke

[
∆xe
∆pv

]
, (111)

where

ke :=

[
keint + kec − kef − keext −lef

hev 0

]
, keint = kemat + kegeo , (112)

is the elemental tangent matrix. Note that contributions kef and keext are not symmetric, even
though the system can be derived from a potential. This is discussed in detail in the theoretical
study [22].
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