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Abstract

This paper provides an overview of recent advances in the computational modeling of the gecko
adhesion mechanism. Several efficient modeling approaches are introduced that address the
adhesion mechanism at various length scales, ranging from the molecular interaction at the
Ångstrom scale to the toe description at the centimeter scale. In particular, detailed three-
dimensional models for the gecko spatulae and setae are discussed. The emphasis here is placed
on the computational efficiency of the presented contact formulations using coarse-graining and
model order reduction. Different finite element methods, based on non-linear structural me-
chanics, are considered to analyze the resulting models. Both continuum and beam formulations
are discussed. In order to obtain an accurate description of peeling, a local finite element sur-
face enrichment technique is presented. The paper also provides some ideas on future modeling
approaches.

keywords: computational contact mechanics, enriched finite elements, gecko adhesion, large
deformations, multiscale approaches, non-linear finite elements, peeling

1 Introduction

Many insects and lizards, like the tokay gecko, have developed remarkable structural mechanisms
to access attractive forces at the molecular scale and translate these into strong adhesional forces
at the macroscale. Figure 1 gives an illustration of the adhesion mechanism used by the tokay
gecko. The soft tissue of the gecko toes is covered by very fine hairs, the so-called setae, which
are only about a hundred micrometers long and a few micrometers thick. The setae branch
into even finer hairs, the so-called spatulae, which are about a thousand nanometers long but
only a few nanometers thick at their tips. This gives the spatulae great flexibility to adhere to
even very rough substrates. The adhesion itself is governed by van der Waals interaction at the
molecular scale. Altogether this mechanism spans about nine orders of magnitude (from the
Ångstrom scale of the atoms to the decimeter scale of the gecko). The modeling of the entire
mechanism poses several major challenges, such as the complex surface microstructure, the
non-linear material description of the structures, the contact dynamics of impact and friction,
the identification and determination of characteristic model parameters, the instabilities caused
by strong adhesion, the peeling behavior of the structure, the model transition between the
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Figure 1: Multiscale modeling hierarchy of the adhesion mechanism used by the gecko

different scales using coarse-graining techniques, the formulation of multiscale models, and
the consideration of multifield aspects, like the coupling of mechanical, thermal, chemical and
biological aspects (Sauer, 2011a). In order to handle all these complexities, computational
models are called for. This paper provides an overview of recent computational advances in
the modeling of the gecko adhesion mechanism that address several of these challenges. Since
computational approaches are only practical if they are accurate, efficient and stable, the focus
is placed on these properties in the following discussion. To the best of the author’s knowledge,
the models presented here are the only computational approaches reported in the literature
that model the gecko adhesion mechanism in detail. A recent overview of analytical modeling
approaches is given by Kwaki and Kim (2010). This work also mentions many important
experimental studies on gecko adhesion. Further recent experimental studies, that are not
covered in this review, are given by Hansen and Autumn (2005); Gravish et al. (2008); Huber
et al. (2008); Pugno and Lepore (2008); Chen and Gao (2010); Puthoff et al. (2010); Hill et al.
(2011). This list is by no means exhaustive. References that are directly related to the modeling
aspects addressed here are mentioned in the corresponding sections below.
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Following the modeling levels identified in Figure 1 in a bottom-up approach, Sections 2 to 8
discuss several distinct and independent submodels that address different aspects of the gecko
adhesion mechanism. Remarks on top-down modeling are provided in Section 9. Section 10
concludes the paper.

2 Coarse-graining of molecular adhesion

The interaction of neighboring bodies, like contact and adhesion, is caused by the interactions
between the individual atoms of these bodies. At very small length scales one can use molecular
dynamics to model and compute the behavior of the bodies. This, however, becomes inefficient
in the range above several nanometers, so that a coarse-grained description of the interaction
is desired. Such a description is presented here for the case of van der Waals adhesion.
Therefore, consider two bodies, denoted B̂1 and B̂2, that contain n1 and n2 atoms, as shown
in Figure 2. Instead of keeping track of all n1 + n2 particles, an effective continuum model is

Figure 2: Coarse-graining of the molecular interaction φ between the discrete bodies B̂1 and B̂2

into the interaction Πc between the continua B1 and B2.

sought, that provides an overall interaction formulation. The van der Waals interaction between
two particles, separated by r, can be described by the Lennard-Jones potential

φ(r) := ε
(r0

r

)12
− 2ε

(r0

r

)6
, (1)

where ε and r0 are model constants. The total interaction energy between the two bodies is
then given by the summation

Π̂c =
n1∑
i=1

n2∑
j=1

φ(rij) , with rij = ‖xi − xj‖ . (2)

In the continuum setting the double summation is replaced by the double integration over the
volume of the two bodies, i.e.

Πc =
∫
B1

∫
B2

β1 β2 φ(r) dv2 dv1 , with r = ‖x1 − x2‖ , xk ∈ Bk . (3)

Here, βk (k = 1, 2) denotes the current particle density of Bk, i.e. the density of the atoms in the
deformed configuration of the bodies. The current density βk is related to the reference density
β0k (the density in the undeformed configuration of the bodies, denoted B0k, k = 1, 2) via the
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volume change during deformation. Considering conservation of mass during deformation, the
identity

βk dvk = β0k dVk (4)

holds. Here, dvk and dVk denote differential volume elements in the deformed and undeformed
configurations, respectively. With this, expression (3) can also be written as

Πc =
∫
B01

∫
B02

β01 β02 φ(r) dV2 dV1 . (5)

The distance r = ‖x1 − x2‖ between two material points x1 ∈ B1 and x2 ∈ B2 refers to
the deformed configurations of the bodies. These are obtained from the deformation mapping
xk = ϕk(Xk) of the reference points Xk ∈ B0k.
In order to construct finite element formulations for this adhesion model, the variation of Πc,
the so-called virtual work of interaction, is needed. It can be found as (Sauer and Li, 2007)

δΠc = −
2∑

k=1

∫
Bk

δϕk · βk bk dvk , (6)

where bk denotes a body force field acting at xk ∈ Bk. This field is given by

bk = − ∂

∂xk

∫
B`

β` φ dv` , ` 6= k . (7)

A finite element formulation, which is directly applied to this formulation, is given in Sauer and
Li (2007). Due to the required six levels of integration (in 3D) such direct formulations tend
to be very inefficient for most applications. Therefore, the following section discusses further
coarse-graining steps to increase the efficiency of computational formulations. In principle, the
formalism described above can also be used to describe other interaction mechanisms.

3 Efficient computational formulations for nanoscale adhesion

This section discusses efficient finite element formulations for evaluating the contact energy δΠc

for nanoscale adhesion. The basic idea is to reduce the amount of numerical integration by
introducing analytical approximations.
The first such approach is to approximate integration (7). This is achieved by considering the
following two steps: In order to evaluate the body force bk at a given point xk ∈ Bk, one first
computes the minimum distance between xk and the neighboring surface ∂B`, i.e.

rk = min
∀x`

‖xk − x`‖ , x` ∈ ∂B` . (8)

The closest point to xk on ∂B` is denoted xp and the surface normal at xp ∈ ∂B` is denoted np,
as shown in Figure 3 below. Secondly, one approximates the neighboring body B` at point xp

by a flat half-space and integrates eq. (7) analytically. One thus obtains (Sauer and Wriggers,
2009)

bk = πβ`εr
2
0

[
1
5

(r0

rk

)10
−
(r0

rk

)4
]

np . (9)

The constants appearing here can be replaced by Hamaker’s constant AH = 2π2β01β02εr
6
0

(Israelachvili, 1991). Compared to eq. (7), approximation (9) is much more efficient to evaluate.
Sauer and Wriggers (2009) have shown that the accuracy of this approximation is very good if
the surface curvature radii of ∂B` are larger than 8 nm.
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Figure 3: Minimum distance computation between xk and ∂B` used to evaluate the body forces
bk(xk) (left); Replacement of the body forces by an effective surface traction tk (right); (Sauer
and Wriggers, 2009).

The second approach considers the approximation of the virtual work computation in eq. (6).
Since the body force field bk is concentrated along the surface of body Bk, it is useful to replace
bk by an effective surface traction tk.3 This traction is obtained by the projection of all body
forces along direction −np onto the surface ∂Bk, as shown in Figure 3. Considering eq. (9), the
effective surface traction

tk = πβkβ`εr
3
0

[
1
45

(r0

rs

)9
− 1

3

(r0

rs

)3
]

np , (10)

is thus obtained. The distance rs is obtained from eq. (8) considering that now also xk is
a surface point (xk ∈ ∂Bk). In Sauer and Wriggers (2009) the difference between the body
force formulation (9) and the surface traction formulation (10) is investigated and it is found
that a significant difference appears only for materials that are much softer than beta-keratin,
which is the material of the gecko foot-hairs. It is noted, that both formulations are locally
normal contact models. Tangential contact forces can be introduced by other mechanisms, as
is discussed in Sec. 5.
The virtual contact work can now be written as

δΠc ≈ −
2∑

k=1

∫
∂Bk

δϕk · tk cosαk dak . (11)

Here the angle αk describes the inclination between the two neighboring surfaces at xk. The
finite element vector, which captures the contact forces acting on the finite element nodes, then
follows as

f e
ck = −

∫
Γe

k

NT
k tk cosαk dak , (12)

where Nk is an array that contains the shape functions of the finite element nodes. It is noted
that the integral over the current surface ∂Bk can be transformed to an integral over the reference
surface ∂B0k (Sauer and Wriggers, 2009). The finite element stiffness matrix corresponding to
f e
ck can be found in Sauer (2012a).

A significant gain in CPU time can be achieved from approximations (9) and (10); see Sauer and
3Beyond a distance of 5.7 nm, the magnitude of bk is less than 0.1% of its maximum attraction value. This

distance is less than the thickness of the gecko spatula.
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Li (2008). They also lead to more stable finite element formulations (Sauer, 2006). Standard
displacement based finite elements can be used to evaluate eq. (12). However, for problems
extending into the micrometer range, standard contact finite elements are quite inefficient, so
that it is highly advantageous to consider special element formulations for adhesion, as are
described in the following section.

4 Efficient formulations for adhesion: Enhanced contact finite
elements

This section presents a finite element enrichment technique for contact computations, which
is more accurate, stable and efficient than standard finite element discretization approaches.
The enrichment approach, originally presented in Sauer (2011b), is motivated by the fact that
during adhesive contact sharp peeling stress peaks often occur at the peeling front. The basic
idea, therefore, is to enrich the surface elements such that the finite element approximation
is more accurate on the surface than it is in the bulk. The simplest of these is the so-called
Q1C2 element, which approximates the contact surface by a quadratic interpolation while the
bulk is approximated by a linear interpolation. This formulation has the same contact accuracy
as a fully quadratic finite element contact description, but is much more efficient. The Q1C2
element is combined with a standard linear finite element (FE) interpolation formulation within
the bulk (like the Q1 element formulation), so that the interpolation is fully quadratic on the
contact surface ∂cBh but only linear in the bulk Bh. Formally this can be written as

uh ∈ P1 in Bh ,
uh ∈ P2 on ∂cBh ,

(13)

where P1 denotes the space of continuous, piecewise linear interpolation functions and P2 de-
notes the space of continuous, piecewise quadratic interpolation functions. Considering standard
8-noded linear brick elements, five additional enrichment nodes are required on the contact sur-
face of the element in order to satisfy condition (13) as Figure 4 shows. The finite element

Figure 4: 3D surface enrichment based on p-refinement: 3D enhanced contact element Q1C2
and its map to the current domain (Sauer, 2011b).

approximation of the displacement field u within the element is then given by the nodal inter-
polation

uh
e =

13∑
I=1

NI uI , (14)

6



where NI (I = 1, ..., 13) denote the shape functions associated with the 13 nodes; see Sauer
(2011b) for details. The Q1C2 formulation already achieves a substantial gain in computational
accuracy and stability, however, the improvement becomes even better in the following approach.

Another enrichment idea consists in using Hermite interpolation on the contact surface, but
using standard linear interpolation in the bulk, such that the interpolated displacement field uh

is continuous (C0) in the entire domain, Bh, and continuously differentiable (C1) on the entire
contact surface, ∂cBh, i.e.

uh ∈ C0 ∀x ∈ Bh ,
uh ∈ C1 ∀x ∈ ∂cBh .

(15)

This is achieved by enriching the finite element nodes on the contact surface by an approximation
for the surface derivative. Considering a standard 4-noded quad-element, the enriched FE
interpolation takes the form

uh
e =

4∑
I=1

NI uI +
2∑

I=1

HI uI,S , (16)

where uI,S denotes the derivative at the FE node I of the displacement vector u along the surface
coordinate S. The shape functions NI and HI , as well as details on the implementation of this
element formulation, are provided in Sauer (2011b). This enrichment technique is denoted as
the Q1CH formulation. The improved accuracy gained by the Q1CH formulation is illustrated
in Figure 5. Sauer (2011b) shows that the error in such peeling computations can be reduced

Figure 5: Peeling of an initially flat elastic strip: computation with common Q1C1 contact
elements (left); computation with enriched Q1CH contact elements (right). The accuracy gain
is particularly large at the peeling front between the marked finite element nodes.

by a factor of 15 compared to the original Q1C1 formulation. The enrichment formulation also
shows substantially improved behavior for sliding contact computations. The enriched contact
element formulation allows an efficient computation of the peeling behavior of gecko spatulae
as is shown in the following section.

5 A detailed 3D model for the gecko spatula

The computational modeling framework outlined in the previous sections allows an efficient
simulation of the adhesional behavior of gecko spatulae, which is considered here. In particular,
the modeling framework is ideal to study the detailed attachment and detachment behavior
of the spatula accounting for variations in spatula size, spatula stiffness, strength of adhesion,
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range of adhesion, surface roughness and loading conditions, and to further investigate geometry
and material optimization. Such a model and study are considered in Sauer and Holl (2012).
There, a three-dimensional description of the spatula shape is presented that is based on twelve
parameters and allows to easily consider size and shape variations. As seen in Figure 6, the

Figure 6: 3D finite element model for a gecko spatula (Sauer and Holl, 2012). The actual finite
element mesh used for the computations is much denser than the one shown here.

model considers a detailed description of the spatula pad and its connection to the spatula
shaft. The spatula pad is very thin in the middle to give it high flexibility to adapt and attach
to rough substrates, but it is surrounded by a thick rim, probably to give it increased stability.
The geometry description is based on the microscopic images found in the literature; e.g. see
Rizzo et al. (2006). A finite element discretization of the spatula geometry is chosen (see Figure
6) that uses enhanced contact elements (see Sec. 4) and thus provides high accuracy in the
evaluation of the contact forces acting on the spatula pad.
Figure 7 shows the results of a pull-off computation. For this, a displacement normal to the
substrate surface is applied to the end face of the shaft. The rotation of the spatula end face
is considered fixed. The peeling deformation of the spatula is shown on the left, the pull-off
force, as a function of the applied displacement, is shown on the right. As seen, the maximum
pull-off force obtained from the computation is 6.7 nN, which falls into the range measured by
Huber et al. (2005) and Sun et al. (2005).4 In Sauer and Holl (2012) also several other load
conditions, material parameters and geometry parameters are examined. The study shows that
the spatula can function over a wide range of model parameters.
The detailed spatula model can also be used to study the influence of substrate roughness.
Figure 8 shows the results of such a computation. A periodic roughness structure is considered
as is shown on the right. The height of the asperities is taken as 8 nm, the distance between
the asperities is 100 nm. The study shows that there can be intimate contact between spatula
pad and substrate even in the valleys of relatively rough substrate surfaces. The spatula model
is suitable to study the peeling behavior for different pull-off angles and surface roughnesses.
Therefore, it is generally necessary to include frictional contact formulations. These can be
modeled by tangential contact models (Laursen, 2002; Wriggers, 2006) or by dissipative material
models (Wriggers and Reinelt, 2009).
The spatula model presented here requires about 100,000 finite elements to capture the spatula
behavior accurately. In some cases, especially at larger length scales, only the overall behavior

4The computational result is obtained from the frictionless contact formulation outlined in the previous sec-
tions. It is shown in Sauer and Holl (2012) that accounting for frictional contact forces hardly affects the behavior
for vertical loading.
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Figure 7: Pull-off simulation of a gecko spatula (Sauer and Holl, 2012): deformed spatula
configurations (left; due to symmetry only half of the spatula is shown); normal pull-off force
due to a normal displacement applied to the end face of the spatula shaft (right); The four black
dots mark the configurations shown on the left.

of the spatula is of interest, and therefore it is desirable to find reduced spatula models that
capture the effective adhesion behavior, but require far less computational effort. Such reduced
models are discussed in the following section.

6 Reduced beam formulations for adhesion structures

The gecko spatula and seta are relatively thin and elongated structures. The overall behavior of
such structures can be described efficiently with beam formulations, which are discussed here.
Such formulations are, for example, ideal for the development of computational models for large
patches of seta arrays. In this section we focus on reformulating the adhesion model of Sections
2 and 3 for beam structures. The modeling of gecko setae and seta patches is then discussed in
the following two sections.
Beam theories are reduced order models that are characterized by the behavior along the beam
axis, while the behavior across the cross section is simplified. Therefore, the body force field bk,
derived in Sections 2 and 3 for van der Waals adhesion, needs to be replaced by an effective line
force acting along the center axis of the beam. Since the beam axis in not necessarily parallel to
the substrate surface (e.g. during peeling) an additional distributed bending moment appears,
as is shown in Sauer (2011c). The distributed line force and bending moment are obtained from
the integration of the body force across the height of the beam. Considering approximation (9),
we find the following expression for the distributed contact line force, acting in the direction
normal to the substrate surface:

T c = Tc np =
(
T (r1)− T (r2)

)
np

/
cos θ , (17)

with

T (r) =
AH

2πr3
0

[
1
45

(r0

r

)9
− 1

3

(r0

r

)3
]
, (18)
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Figure 8: Adhesion of the spatula pad to a rough substrate surface (Sauer and Holl, 2012):
surface model (left); deformation of the spatula pad (top right: side view with substrate surface;
bottom right: bottom view).

and
r1 = rM −

h

2
cos θ , r2 = rM +

h

2
cos θ . (19)

Here h denotes the height of the beam, θ denotes the angle between beam axis and substrate,
and r1, rM and r2 denote the distances from the substrate surface to the bottom surface of the
beam, beam axis and top surface of the beam, respectively (Sauer, 2011c). AH and r0 are the
material constants introduced in Sections 2 and 3. The distributed contact bending moment is
obtained as

Mc =
(
rM Tc − r0 T

∗
c

)
tan θ , (20)

with
T ∗c =

(
T ∗(r1)− T ∗(r2)

)/
cos θ , (21)

and

T ∗(r) =
AH

2πr3
0

[
1
40

(r0

r

)8
− 1

2

(r0

r

)2
]
. (22)

In most applications we can neglect the contributions T (r2) and T ∗(r2). The influence of the
bending moment is particularly large if the bending deformations during peeling are very large
(Sauer, 2011c). The virtual contact work is now given by the virtual work done by T c and Mc,
i.e.

δΠc = −
∫

L

(
δu · T c + δθ ·Mc

)
bdS , (23)

where L denotes the length of the structure, u and θ denote the displacement and rotation
of the cross section and b(S) denotes the width of the contact surface. It is advantageous
to consider θ as an independent variable, as is done in the Timoshenko beam theory. This
yields a symmetric FE stiffness matrix; see Sauer (2012b). Expression (23) can be applied to
any beam formulation. Particularly useful for large deformations are geometrically exact beam
formulations, e.g. see Reissner (1972) and Wriggers (2008). In this case, the expression for the
FE contact force vector associated with eq. (23) can be found in Sauer (2012b).
Figure 9 shows the deformation during peeling of an elastic strip with a constant height of h =
10 nm and elastic modulus of E = 2 GPa. The adhesion parameters are chosen as AH = 10−19 J
and r0 = 0.4 nm.5 The beam model can be used to investigate the effect of the bending stiffness
on the peeling force, as shown in Figure 10 (Sauer, 2011c): For very low stiffness values, the
peeling force approaches the result according to Kendall (1975). For larger stiffness values, as
we have for the gecko spatula, the computed peeling force disagrees with the Kendall result,

5For these parameters, the adhesion energy is wadh = 3
√

15AH/(16πr20) = 0.0307 J/m2.
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Figure 9: Peeling of a thick elastic strip by an applied vertical displacement u (Sauer, 2011c).
The strip is modeled as a non-linear beam. The right end is considered free to rotate and move
horizontally, i.e. there is no moment and horizontal force acting at this boundary.

since the Kendall model neglects the bending stiffness of the strip. The unsuitability of the
Kendall model for gecko spatulae can also been seen from the detailed 3D spatula computation
shown in Figure 7: The spatula peeling force increases gradually, while the Kendall model would
predict a constant value. In Sauer (2011c) it is further shown that the spatula stiffness lies in
the range where the peeling work attains a maximum. In Sauer (2012b) it is shown that the
beam formulation captures the overall peeling behavior of the gecko spatula quite well.

7 A detailed 3D model for the gecko seta

A beam formulation can also be used to describe the behavior of the gecko seta, which is
discussed in this section. The challenges in modeling the gecko seta lie in the complex geometry,
the constitutive behavior of the fibrilar material, and the effective adhesion behavior of the seta
tips. A three-dimensional model for the seta geometry that captures the detailed branching
of the hierarchical microstructure but only uses a few geometrical parameters is proposed in
Sauer (2009), see Figure 11. In this model, the adhesion behavior at the seta tips is obtained by
coarse-graining the adhesion behavior of the spatula, which, in turn, is obtained by a preceding
computation at the spatula level. This coarse-graining step is highly useful since it avoids
refining the seta tips down to nanoscale resolution in order to capture the adhesion forces
given by eqs. (17) and (20). Due to this coarse-graining, the entire seta can be described
accurately using only about 1700 finite elements. The seta structure itself is described by a
three-dimensional, geometrically exact, non-linear beam formulation (Simo, 1985; Simo and
Vu-Quoc, 1986) considering a linear elastic isotropic material response. A difficulty in the
coarse-graining, however, is the consideration of model variations at the spatula level, since
they may each result in different coarse-grained models. This is further complicated by the
non-linearity of adhesion. A useful approach avoiding these difficulties would be to use adaptive
coarse-graining, applied only to selected contact regions, during computation. In Sauer (2010)
the seta model is used to study the normal pull-off behavior considering different pull-off rates.
The maximum pull-off forces obtained from these computations are in the range of 0.4µN and

11



Figure 10: Maximum peeling force of an elastic strip for different values of its bending stiffness
EI (Sauer, 2011c). The approximate stiffness range of the gecko spatula is indicated. The
bending stiffness (per unit width) is normalized by EI0 = Eh3/12 with E = 2 GPa and h =
10 nm.

1.4µN. During pull-off, the seta tips detach successively from the substrate as is shown in
Figure 11. Due to its efficiency, the proposed seta model can be used to study the attachment

Figure 11: 3D beam model of a gecko seta (left); seta deformation during normal pull-off from
an adhering substrate (right) (Sauer, 2009).

and detachment behavior of the seta for various loading conditions, material parameters and
geometrical parameters. Given a model for the seta behavior, one can complete the bottom-up
modeling of the gecko toe, as is discussed in the following section.

8 Effective adhesion models at the gecko toe level

Each gecko toe is covered with hundreds of thousands of setae, so that the effective adhesion
behavior at the toe depends on the combined effect of all these setae. Examining the toes
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carefully shows that setae are arranged in lamellas that cover the toes in stripes. Each toe has
about a dozen such lamellas. Each lamella consists of a thin flexible band that spans the width
of the toe. So far computational approaches to describe the adhesion at the lamella or toe scale
have not been formulated. This section, therefore, provides some thoughts on this open research
topic.
Due to the alignment of the setae, it can be expected that the adhesion behavior of the lamella
and the toe surface is anisotropic, i.e. directionally dependent. This basic property should be
reflected by effective lamella and toe models; see Figure 1. In accordance with the bottom-up
modeling considered so far, the effective lamella behavior can be obtained from coarse-graining
a large patch of setae. For this, one must not only account for the deformation and adhesion
properties of each seta, but also account for the effective interaction between neighboring setae.
Due to the flexibility of the setae one should also account for the large displacements, rotations
and deformations, for example during buckling, of the individual setae in the patch. Due to
this, the alignment of the setae may substantially change during deformation. Therefore it may
not be sufficient to consider anisotropic continuum models with fixed directions of anisotropy.
At present, it seems useful to consider the following coarse-graining steps:
1. Coarse-graining of a seta patch based on a detailed model (e.g. the model discussed in the
preceding section) into an effective seta patch, which neglects details like the seta branching,
but still accounts for the fibrillar nature of the seta. The coarse-grained seta patch could be
described efficiently by a coarse beam formulation.
2. Coarse-graining of the coarse seta patch model into an effective, anisotropic continuum,
which could then be described by solid finite elements. At this level one must expect a fairly
poor description of local effects such as seta buckling and self-contact.
3. Further coarse-graining of the continuum lamella model into an effective surface adhesion
formulation that describes the surface forces acting on the toe by a force-distance relation,
similar to the case of van der Waals interaction given in expression (10). Such a formulation
would not account for any details of the setae, nor would it account for the details of the spatulae,
surface roughness or molecular interaction, but it would still take the effective behavior of all
these into account.

9 Top-down modeling: Going all the way back down

In order to provide accurate boundary conditions and far-field conditions for the individual
model levels and in order to refine these, one also has to think about top-down modeling. For
example, the boundary or loading conditions of the lamella are determined by the dynamics
of the toe during gecko locomotion. In turn the dynamics of the lamella provides boundary
conditions at the seta level; and so forth. This feedback can be used to refine the individual
submodels iteratively, for example in a staggered multiscale approach. As a further idea one
can also envision concurrent multiscale strategies that integrate all modeling levels in a coupled
computational model. A key requirement to make this as efficient as possible is to consider
adaptive modeling strategies that only consider the use of refined model levels for those surface
areas that require them. As an example, for the seta detachment shown in Figure 11, it would
be advantageous to consider a refined adhesion model only for those seta tips, which are in the
process of detachment, while using a coarse description for all other tips. Such approaches,
while challenging to set up, may provide the right balance between accuracy and efficiency.
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10 Conclusion

This paper discusses the computational modeling of the gecko adhesion mechanism shown in
Figure 1. This mechanism spans nine orders of magnitude and therefore cannot be addressed
by a single model, but must rather be approached by a combination of several separate but
related submodels, which describe different aspects at the various length scales. Considering a
bottom-up modeling approach, this paper outlines several detailed three-dimensional adhesion
models for deformable continua, gecko spatulae and setae, and gives some ideas on modeling
the adhesion behavior at the surface of the gecko toes. In all cases the emphasis is placed on
the development of efficient computational formulations. These are based on the introduction
of half-space approximation, effective surface tractions, enriched contact finite elements, and
reduced beam formulations.
Some of the presented submodels and computational techniques will benefit from further refine-
ment: The enriched contact element technique has not yet been formulated for two deformable
bodies, efficient time-integration approaches for adhesion need to be developed, contact algo-
rithms for coupled adhesion and friction are needed, both the spatula and seta models should be
revisited, and computational models at the lamella and toe level are still lacking. Also missing
is a concurrent multiscale approach combining the different modeling layers into a single simu-
lation framework. With an improved computational modeling framework the pull-off studies at
the spatula and seta levels should be re-examined for different roughness and loading param-
eters. A difficulty in all the modeling approaches discussed here are the uncertainties of the
model parameters, like the detailed geometry of the microstructure and the material parame-
ters characterizing large-deformation elasticity and visco-elasticity. These uncertainties call for
further experimental studies. Despite these current limitations, computational approaches are
the only choice for examining many aspects in detail that are not accessible experimentally and
are also the key to conduct optimization studies of the adhesion mechanism, like shape, size
and material optimization.
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