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Abstract

Recently an enriched contact finite element formulation has been developed that substantially
increases the accuracy of contact computations while keeping the additional numerical effort
at a minimum (Sauer, 2011). Two enrichment strategies were proposed, one based on local p-
refinement using Lagrange interpolation and one based on Hermite interpolation that produces
C1-smoothness on the contact surface. Both classes, which were initially considered for the
frictionless Signorini problem, are extended here to friction and contact between deformable
bodies. For this, a symmetric contact formulation is used that allows the unbiased treatment of
both contact partners. This paper also proposes a post-processing scheme for contact quantities
like the contact pressure. The scheme, which provides a more accurate representation than
the raw data, is based on an averaging procedure that is inspired by mortar formulations.
The properties of the enrichment strategies and the corresponding post-processing scheme are
illustrated by several numerical examples considering sliding and peeling contact in the presence
of large deformations.

Keywords: cohesive zone modeling, computational contact mechanics, enhanced finite ele-
ments, nonlinear finite element methods, peeling, sliding friction

1 Introduction

It is well known that coarse finite element discretizations can lead to oscillatory load-displacement
curves for sliding (Laursen, 2002; Wriggers, 2006) and peeling contact (Crisfield and Alfano,
2002). In the past, various contact smoothing techniques have been proposed to address this
issue, e.g. see El-Abbasi et al. (2001); Padmanabhan and Laursen (2001); Wriggers et al. (2001).
These techniques consider the smoothing of the master surface in order to increase the accuracy
of the evaluation of the contact forces. Beyond that, it is also useful to smoothen the slave
surface in order to increase the accuracy of the contact integrals. This can be achieved by high-
order FE interpolation based on Lagrange (Puso et al., 2008), hierarchic (Franke et al., 2010)
or NURBS interpolation (Temizer et al., 2011; De Lorenzis et al., 2011). These approaches use
high-order interpolation throughout the discretized domain. As an alternative, one can also
consider just using high-order interpolation on the contact surface, and resorting to standard
linear interpolation within the domain.
Such a local contact enrichment strategy was proposed in Sauer (2011), and it was shown there
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that the approach increases accuracy and robustness for contact computations, while keeping
the additional numerical effort at a minimum. The enrichment strategy is based on high-order
Lagrange and Hermite interpolation. The latter provides a discretization that is C1-continuous
on the contact surface but remains C0 elsewhere. Such a setup seems ideal for contact compu-
tations that are typically governed by the accuracy of the contact contributions. Consequently,
large accuracy gains are achieved for the sliding and peeling examples of Sauer (2011). These
examples are restricted to Signorini contact conditions. It remains to be shown that local en-
richment strategies also achieve accuracy and robustness gains for friction and contact between
deformable contact partners. This is the purpose of the present paper.
A further objective of this paper is to present a novel post-processing scheme for contact quan-
tities like the contact pressure. Such a scheme is useful, since the pressures obtained through
other means can be oscillatory and inaccurate.

The remainder of this paper is structured as follows. Sec. 2 presents the theory of the contact
models considered here. Sec. 3 reviews the enriched contact FE formulation of Sauer (2011)
and presents the novel contact post-processing scheme (Sec. 3.4). Numerical examples are then
shown in Sec. 4. The paper concludes with Sec. 5.

2 Considered contact models

This section discusses the continuum mechanical equations for contact, considering classical
penalty formulations, Coulomb friction and cohesive zone models.

Consider two bodies, denoted B1 and B2,3 that can come into contact and undergo large defor-
mations. For a quasi-static contact problem, the deformation field ϕ = {ϕ1,ϕ2} of B1 and B2

satisfies the weak form

δΠ(ϕ, δϕ) = δΠint + δΠc − δΠext = 0 , ∀ δϕ ∈ V , (1)

where δΠint and δΠext denote the internal and external virtual work contributions and V is
a suitable function space for the virtual displacement field δϕ. Further, δΠc = δΠc1 + δΠc2

denotes the virtual work of the contact forces. For each body Bk (k = 1, 2), the virtual contact
work can be written as

δΠck = −
∫
∂cBk

tk · δϕk dak , (2)

i.e. the contact tractions t1 and t2 are each integrated over the current contact surface ∂cBk
where they act on.4 Here, dak ⊂ ∂cBk denotes a surface element in the current configuration.
A formulation of this kind was initially proposed by Papadopoulos et al. (1995). Expression (2)
can be derived from a global contact potential Πc (Sauer and De Lorenzis, 2012). It leads to a
robust and efficient contact algorithm that is unbiased w.r.t. the two contact surfaces (Sauer
and De Lorenzis, 2012). This algorithm is discussed further in Sec. 3. Introducing the scaled
traction

T k := λs
k tk , (3)

where

λs
k :=

∂ak
∂Ak

(4)

3The symbols B1 and B2 are also used to denote the current configuration of the bodies.
4k is just the index for body Bk; no summation over k is implied here or elsewhere.
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denotes the surface stretch between the current area element dak ⊂ ∂Bk and the corresponding
reference area element dAk ⊂ ∂B0k, eq. (2) can be rewritten into the equivalent expression

δΠck = −
∫
∂cB0k

T k · δϕk dAk , (5)

which is now integrated over the contact surface in the reference configuration.

2.1 Normal contact formulation

We consider here the classical penalty method for normal contact, given by5

tk =

{
−εn gnnp for gn < 0 ,
0 for gn ≥ 0 ,

(6)

where εn is the penalty parameter. The length gn denotes the normal gap between the two
bodies, see Fig. 1. For a given surface point xk ∈ ∂Bk, the gap is defined by

gn := (xk − xp) · np , (7)

where xp ∈ ∂B` denotes the closest projection point of xk on the neighboring body B` (` 6= k).
xp is specified by the convective coordinate ξ that describes the surface points x`(ξ) ∈ ∂B`.
Denoting ξp as the coordinate of xp we thus have

xp = x`
∣∣
ξ=ξp

. (8)

The unit vector np denotes the surface normal of ∂B` at projection point xp ∈ ∂B`. For a
discrete surface that is only C0-continuous, the surface normal jumps at the finite element
nodes. Therefore, it is practical to define the normal as

np :=
xk − xp

gn
(9)

and evaluate the gap from

gn = ±
√

(xk − xp) · (xk − xp) . (10)

An alternative is to average np at the element nodes (Yang et al., 2005). This is not considered
here.

2.2 Frictional contact formulation

For the description of frictional contact, the contact traction is decomposed into normal and
tangential components, i.e.

tk = pknp + τkāp , (11)

where pk = tk · np denotes the contact pressure and τk = tk · āp denotes the contact shear
traction. Here, the former is taken from eq. (6). The unit vector āp denotes the normalized
tangent vector of ∂B` at xp. It is obtained from the normalization of the tangent vector

ap =
∂xp

∂ξp
, (12)

5Note, that this formulation misses an additional, negligible term to be variationally consistent (Fischer and
Wriggers, 2005; Sauer and De Lorenzis, 2012).
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Figure 1: Definition of the kinematic contact quantities g, gn and gt for a given point xk and
surface ∂B`.

i.e. āp = ap/âp for âp :=
√
ap · ap.

In frictional contact two mechanisms are distinguished: Sticking friction and sliding friction.
The distinction is based on the slip criterion

fs

{
< 0 sticking ,
= 0 sliding ,

(13)

where
fs = |τk| − µ pk . (14)

fs = 0 denotes a surface in traction state space tk = {pk, τk}. During sliding the contact traction
is constrained to stay on this surface. For the description of sticking we consider the penalty
method.
The shear traction τk is related to gt, which denotes the sliding path of the projection point xp

on surface ∂B` as shown in Fig. 1. Here,

x0
p := ϕ`(X

0
p) (15)

denotes the current position of the initial projection point Xp(t0). The sliding path is found
from integrating the slip increment (Wriggers, 2006)

dgt = âp dξp . (16)

The tangential slip is decomposed into two parts, a reversible (elastic) part, ge, that is recovered
upon unloading and is associated with sticking, and an irreversible (inelastic) part, gs, that is
not recovered upon unloading and is associated with sliding, i.e.

gt = ge + gs . (17)

To assess the decomposition, an evolution law for the inelastic slip is required. The change in
gs points in the direction of τk, i.e. we have

ġs = γ
τk
|τk|

, (18)

where the parameter γ = |ġs| > 0 describes the proportionality. Evolution law (18) needs to be
integrated in time. Therefore, we consider a discretization in time, and march from time step
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tn to tn+1.6 In this manner we find the new slip

gn+1
t = gnt + ∆gn+1

t , (19)

with
∆gn+1

t = ân+1
p

(
ξn+1

p − ξnp
)

(20)

according to eq. (16) and the implicit Euler integration scheme. To simplify the notation, index
n + 1 is omitted in the following. All quantities without this index are now understood to be
evaluated at tn+1. Given the slip contributions gnt and gns at tn and the new slip gt at tn+1 we
can now find the new inelastic slip at tn+1 by applying implicit Euler to eq. (18), i.e.

gs = gns + ∆γ
τk
|τk|

. (21)

In order to obtain the shear τk at tn+1, a predictor-corrector algorithm is used. At tn+1, the
additional slip ∆gt is first predicted to be an additional elastic slip, i.e. ∆gt = ∆ge and ∆gs = 0.
According to the penalty method the traction τk is assumed to be proportional to ge. We thus
find

τ trial
k = −εt(gt − gns ) , (22)

where the superscript ‘trial’ refers to the fact that this is only a prediction. With this prediction
the slip criterion (14) is checked. If a violation is detected (i.e. if fs(τ

trial
k ) > 0), sliding occurs

and the traction needs to be corrected. According to Coulomb’s sliding law, we now have

τk = µ pk
ġs

|ġs|
, (23)

which follows directly from fs = 0 and eq. (18). It can be further shown that

ġs

|ġs|
=

τk
|τk|

=
τ trial
k

|τ trial
k |

= sign τ trial
k =: τ̄ trial

k . (24)

If sliding occurs, we need to compute the new inelastic slip gs from eq. (21). Enforcing fs(τk) = 0,
we find

∆γ =
fs(τ

trial
k )

εt
. (25)

If no additional sliding occurs we have ∆γ = 0.

2.3 Cohesive zone formulation

This formulation considers cohesion between the surface points xk ∈ ∂Bk and x0
p ∈ ∂B`, where

x0
p denotes the current location of the original projection point X0

p obtained at t0, see Fig. 1.
The gap and the direction between xk and x0

p are obtained from

g = ‖g‖ , g := xk − x0
p , ḡ :=

g

g
. (26)

Cohesion is considered to occur at a fixed number of bonds per surface area. This bond density
is denoted by βs

k. Each bond produces the force F k upon separation, such that the traction
becomes tk = βs

k F k. The number of bonds is considered to remain invariant under deformation,
i.e.

βs
k dak = βs

0k dAk = const. , (27)

6The variable t does not need to describe actual time. It can also be associated to the computational load
stepping.
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where βs
0k denotes the number of bonds per reference surface area. It is therefore convenient

to formulate cohesion w.r.t. the undeformed (reference) surface, i.e. in terms of the surface
traction T k = βs

0k F k. Here we consider the separation model

T k = −T0
g

g0
exp

(
1− g

g0

)
ḡ , (28)

where T0 and g0 are model constants. This model is a special case of the classical cohesive zone
model of Xu and Needleman (1993). Note, that this model considers equal energy in mode I and
mode II debonding. This model combines normal and tangential (sticking) contact. Cohesive
zone model (28) can be extended to damage. This is not considered here.

3 Enriched contact finite elements

3.1 Enrichment formulation

First, we briefly describe the enrichment formulation of Sauer (2011). This formulation provides
a high-order contact representation while using a low-order representation in the domain. In
contrast to standard interpolation, this allows a much more accurate integration of the surface
integrals, which is very beneficial for contact. The enrichment is based on local, high-order
Lagrange and Hermite interpolation. The elements that are constructed in this way are shown
in Fig. 2. Here Q1C1 denotes the standard quadrilateral element, which uses linear interpolation

Figure 2: Enriched contact finite elements: standard linear element (Q1C1); quadratic enrich-
ment (Q1C2); quartic enrichment (Q1C4); Hermite enrichment (Q1CH). The figure shows the
master domain Ω� with contact surface ∂cΩ�, which is then mapped to the undeformed and
deformed element domains Ωe

0k and Ωe
k with contact surfaces Γe0k and Γek.

both in the domain and on the contact surface. Q1C2 and Q1C4 denote Lagrange-enriched
contact elements that use quadratic and quartic Lagrange interpolation on the contact surface,
while the interpolation is linear otherwise. Q1CH denotes the Hermite-enriched contact element,
which provides a C1-continuous surface representation while the domain remains C0-continuous.

In all cases the displacement field within element Ωe
k is interpolated by the approximation

uk(ξ) ≈ Nk(ξ)uek , ξ ∈ Ω� . (29)

A likewise interpolation is used for the deformation field xk, the reference configuration Xk and
the virtual displacement field δϕk. In eq. (29),

Nk =
[
N1 I , N2 I , ... , Nnek

I
]

(30)
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is an array with size ndim × ndimn
e
k, where, in 2D, ndim = 2 and nek = 4 for Q1C1, nek = 5

for Q1C2, nek = 7 for Q1C4 and nek = 6 for Q1CH. NI = NI(ξ), for I = 1, ..., nek, denote the
shape functions of element Ωe

k, which are given in Sauer (2011) for the four different element
classes of Fig. 2. In case of Hermite interpolation, N5 and N6 denote the shape functions of the
derivative-degrees-of-freedom. On the contact surface, Γek, interpolation (29) can be reduced to
the surface nodes, i.e. we then have nek = 2 for Q1C1, nek = 3 for Q1C2, nek = 5 for Q1C4 and
nek = 4 for Q1CH.

Interpolation (29) satisfies the partition of unity, where each NI has a compact support. The
support radius is just one element (Sauer, 2011). Note that for NURBS surface representations
the support radius tends to be much larger.

3.2 Discretized weak form

Discretized, eq. (1) takes the form

vT
[
fint + fc − fext

]
= 0 , ∀v ∈ Vh . (31)

where Vh is a suitable space for the virtual nodal displacements v. Here fint, fc and fext denote
the nodal forces corresponding to the virtual work contributions δΠint, δΠc and δΠext. From
the discretized weak form (31) we can extract the equation

f(u) = fint + fc − fext = 0 , (32)

which describes force equilibrium at the free finite element nodes. The forces fint, fc and fext

are assembled from the elemental contributions f eintk, f
e
ck and f eextk obtained from the integration

over the volume elements Ωe
k and surface elements Γek. f eintk is computed from the internal stress

field; see (Wriggers, 2008) for details. In the following examples we consider the Neo-Hookean
material model

σ =
Λ

J
(ln J) I +

µ

J

(
FF T − I

)
, (33)

where J is the determinant of the deformation gradient F = Gradϕ. Λ and µ correspond to the
bulk and shear moduli (in the linear elastic regime). They are related to Young’s modulus E
and Poisson’s ratio ν, via Λ = 2µν/(1− 2ν) and µ = E/2/(1 + ν). For the following examples,
we further consider fext = 0. f eck is discussed below.

3.3 Contact formulation

The contact force vector on surface element Γek ⊂ ∂Bhk is given by

f eck = −
∫

Γe0k

NT
k T k dAk = −

∫
Γek

NT
k tk dak , (34)

which follows readily from eqs. (2) and (5). Numerical quadrature is considered to integrate
(34). The contact traction tk (T k respectively) is then evaluated at every quadrature point
using eq. (6) for frictionless contact, eq. (11) for frictional contact and eq. (28) for cohesive
separation. All contact quantities are evaluated w.r.t the current configuration of the two
bodies. Expression (34) is evaluated equivalently for both surfaces (k = 1, 2). This approach,
named the two-half-pass contact algorithm is discussed in detail in Sauer and De Lorenzis (2012).
It is unbiased w.r.t. the contact surface and is more robust and efficient than classical one-
pass contact algorithms. Sauer and De Lorenzis (2012) also contains the tangent matrices
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for expression (34). If one body is considered rigid, formulation (34) is equal to the one-pass
approach of Fischer and Wriggers (2005).

For large penalty parameters and a high number of quadrature points, formulation (34) can
converge poorly. The example in Sec. 4.3 shows that this problem is remedied by the contact
enrichment proposed here. Alternatively one can also consider a Mortar description. This will
be considered in future research.

Next, we discuss the computation of xp, ap and λs
k for a surface discretization based on the

elements shown in Fig. 2. The projection point is given by

xp =
∑
I

NI(ξp)x`I , (35)

where x`I ∈ ∂Bh` denote the positions of the surface nodes. The tangent vector then follows as

ap =
∂xp

∂ξ
=
∑
I

NI,ξ(ξp)x`I , (36)

where NI,ξ := ∂NI/∂ξ. The coordinate of the projection point, ξp, is found from solving the
nonlinear equation

f = (xp − xk) · ap = 0 . (37)

See Wriggers (2006) or Sauer and De Lorenzis (2012) for details. In 2D, the surface stretch
describes the change of lengths from the reference to the current configuration and can thus be
obtained from

λs
k =

‖ak‖
‖Ak‖

=

√
ak · ak√
Ak ·Ak

=
âk

Âk
, (38)

with âk :=
√
ak · ak and Âk :=

√
Ak ·Ak. In analogy to (36),

ak =
∂xk
∂ξ

=
∑
I

NI,ξ x
k
I ,

Ak =
∂Xk

∂ξ
=
∑
I

NI,ξX
k
I

(39)

denote the tangent vectors at xk ∈ ∂Bhk and Xk ∈ ∂Bh0k.

The tangent matrices associated with the above contact formulation are discussed in Sec. A.
Due to the compact support of the enrichment formulation, the coupling terms only involve
single element pairs from the two neighboring surfaces. This keeps the complexity and the
matrix fill-in minimal.

3.4 A post-processing scheme for the contact pressure

In order to compare the performance of the different contact element formulations it is useful to
examine the contact pressure. Here the question arises which pressure to consider. One can for
example extract the contact pressure from the FE stress field σ, or one can extract it from the FE
contact traction t, defined here continuously along the surface according to the models of Sec. 2.
But both these choices have deficiencies: The stress field is not very accurate for displacement
based finite elements, since it is related to the derivative of the displacements. The surface
traction, on the other hand, can be highly oscillatory, especially for the penalty method with
large penalty parameters (Sauer, 2011; Temizer et al., 2011; De Lorenzis et al., 2011). The
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problem can be seen from the following example: Consider using linear finite elements to model
contact with a curved surface such that gn ≥ 0. Further consider using contact formulation (34)
and (6) with infinitely many quadrature points. In this case the contact constraint gn = 0 can
only be satisfied at one quadrature point, while for all other points one must have gn > 0. In
theory we thus obtain a singular pressure at this point while the pressure is zero elsewhere.
Above that, the contact traction is in itself not an equilibrated quantity, since equilibrium is
only satisfied at the finite element nodes.
This motives the construction of a post-processed pressure field that is both smoother and more
accurate than raw pressure data. We therefore propose an averaging scheme for the pressure
field that is inspired by the mortar formulation used in Temizer et al. (2011).

In general, the averaging is constructed as follows. Consider a field quantity fk(s) defined on the
contact surface ∂cBk.7 Here, the variable s is used to denote the coordinate along the current
surface. An example is the contact pressure pk(s). We now seek an accurate approximation to
fk(s) that is free from the deficiencies noted above. It is natural to use the FE interpolation for
this, i.e. we construct a post-processed field fp

k (s), defined on ∂cBhk , using the interpolation

fp
k :=

∑
I=1

NI(ξ) fkI (40)

and define the nodal values fkI as

fkI :=

∫
∂cB0k

NI fk dAk∫
∂cB0k

NI dAk

. (41)

These fkI correspond to an averaging of fk(s) over the support width of shape function NI .
8

In eq. (41), both denominator and enumerator can be determined in an element-wise manner.
Clearly, the functions fp

k (s) and fk(s) are not equal in general, even at the finite element nodes,
i.e. fp

k (sI) = fkI 6= fk(sI). However, as the FE mesh spacing h approaches zero, NI approaches
the Dirac delta function, so that fp

k (sI)→ fk(sI) and

fp
k (s)→ fk(s) for h→ 0 . (42)

This property carries over to the finite element approximation of fk, denoted fhk , as long as
fhk → fk as h → 0.9 This is the case for the contact pressure considered in the following
examples. A formal proof of eq. (42) is included in Appendix B. Property (42) motivates the
proposed interpolation scheme.
For the Hermite (Q1CH) enrichment scheme, the post-processing takes the form

fp
k :=

∑
I

NI(ξ) fkI +
∑
I

HI(ξ) f
′
kI . (43)

The nodal interpolant f ′kI , which expresses the derivative w.r.t. ξ, is constructed from the
averaging10

f ′kI :=

−
∫
∂cB0k

N ′I fk dAk∫
∂cB0k

NI dAk

, (44)

7We first consider the continuous case, i.e. fk does not depend on the FE discretization.
8Only the support area contained in the contact surface ∂cBk is considered.
9To satisfy eq. (42), any dependance of fhk on h must decay rapidly as h→ 0; see Appendix B.

10Alternatively, one could consider NI f
′
k in eq. (44), but this is less convenient as f ′

k = fk,ξ is usually not
readily available.

9



as it satisfies the property fp
k,ξ(sI) = f ′kI → fk,ξ(sI) as h → 0. Thus, interpolation (43) also

satisfies property (42).

For the examples in Sec. 4, we use interpolations (40) and (43) to construct smooth fields for
the contact pressure, contact shear and the surface stretch, i.e we consider

• pk := tk · np

• τk := tk · āp

• λs
k

for fk in eqs. (41) and (44); see Figs. 7, 8 and 15.

To demonstrate convergence, we examine the effect of the proposed post-processing scheme
on the contact pressure of the ironing example of Sec. 4.3. Fig. 3a shows the convergence of
the raw contact pressure pk = −εn gn (according to formulation (6)) and the post-processed
contact pressure pp

k for the Q1CH discretization (defined by (43)). As seen, the post-processed

a. b.

Figure 3: Convergence of the post-processing scheme for the numerical example discussed in
Sec. 4.3. Shown is the contact pressure acting on the cylinder. a.: error for increasing mesh
density (solid lines: L2 error w.r.t. post-processed pressure at m = 7; dashed lines: L2 error
w.r.t. raw pressure at m = 7). b.: accuracy of the raw and post-processed contact pressure (for
m = 3; dots correspond to FE nodes); ‘exact’ denotes the raw pressure for m = 7.

pressure converges faster than the raw pressure. This is due to the smoothing property of the
post-processing scheme that is seen in Fig. 3b: The raw pressure oscillates for a coarse FE
discretization with large contact penalty (here εn = 1000E0/L0).11 The post-processing scheme
gets rid of these oscillations and thus comes very close to the ‘exact’ result. Note, that the
oscillations in the raw pressure can only be captured, if sufficiently many quadrature points are
used for their evaluation. The FE meshes used in Fig. 3 contain 5 · 22m elements inside the
block and 21 · 22m−5 elements inside the cylinder (see Fig. 13 for m = 3).

11These oscillations, according to eq. (6), reflect the discretization error in the approximation of the normal con-
tact penetration −gn. For comparably large penalty parameters (considered here) and coarse FE discretizations,
the contact penetration is very small compared to the element size, so that surface inaccuracies are amplified
in the computation of gn and cause the shown oscillations. As the discretization is refined (while keeping the
penalty parameter fixed), the resulting penetration increases compared to the element size. Surface inaccuracies
now cause less errors in the computation of gn and the oscillations in the raw pressure disappear quickly, as
the result for m = 7 indicates. Due to this rapid decay, eq. (42) holds, which implies that the post-processed
pressure, like the raw pressure, converges to the exact contact pressure.
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Remark 1: The averaging of eqs. (41) and (44) can also be defined over the current surface
∂cBk. This leads to slightly different nodal values, even for linear elements.

Remark 2: One can also consider the traction tk directly in eqs. (41) and (44). With this, one
can then conceive an alternative definition for the smoothed pressure: Extracting the pressure
out of the smoothed traction, instead of smoothing the extracted pressure, as is considered
above.

Remark 3: Alternatively, for Q1CH elements, f ′kI can also be defined as

f ′kI :=

15

4

∫
∂cB0k

HI fk dAk∫
∂cB0k

NI dAk

. (45)

The factor 15/4, as well as the minus sign in definition (44), are needed in order to reproduce
linear functions exactly. Compared to (44), alternative (45) only yields minor differences.

4 Numerical examples

This section discusses several numerical examples that illustrate the performance of the enriched
contact formulation for the contact models presented in Sec. 2.

4.1 Frictional ironing problem

4.1.1 Problem setup

As a first example we consider sliding contact between a rigid cylinder (radius L0) and a
deformable block (dimensions 2L0×10L0), as shown in Fig. 4. The example is used to study the

Figure 4: Ironing problem: frictional sliding contact between a rigid cylinder and a soft block.
The coloring shows the stress I1 = trσ normalized by E.

contact force, contact tractions and the surface stretch as they are obtained from the different
enhancement formulations. The example is identical to the frictionless example reported in
Sauer (2011), with the only difference that now friction is considered. The bottom of the block
is considered fixed, and a periodic boundary condition is applied to the vertical boundaries of the
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block. In this case, the contact state remains constant during sliding and the net contact forces
Px and Py remain constant. The block is modeled by the Neo-Hookean material law (33) using
ν = 0.3. E and L0 are used for normalization and remain unspecified. The contact parameters
for normal contact (Sec. 2.1) and friction (Sec. 2.2) are chosen as εn = 100E/L0, εt = 100E/L0

and µ = 0.5. The mesh of Fig. 4, with 4 elements per L0 and nqp = 100 quadrature points per
contact element, is used for the following analysis.

4.1.2 Contact forces

Fig. 5 shows the net contact forces Px and Py as function of the sliding distance ux. Shown

a.

b.

c.

Figure 5: Contact forces Px and Py between cylinder and block in dependance of the sliding
distance ux: a.: ‘Exact’ result; b. & c.: Enlargement showing the different contact formulations.

are the results for the different contact formulations in comparison to the ‘exact’ result, which
is obtained from a very fine mesh (using 32 equidistant finite elements along L0). The two
enlargements show that oscillations are present in all formulations. The period of this is equal
to the element length L0/4. The oscillations are very large for Q1C1, and reduced substantially
for the enrichments Q1C2, Q1C4 and Q1CH. A quantitative analysis of this is given in Tab. 1.
Here,

∆Pi := max
ux

(Pi)−min
ux

(Pi) , i = x, y (46)

denotes the oscillation magnitude of forces Px and Py. In the table these are reported relative
to the ‘exact’ force values, denoted P ex

x and P ex
y . Compared to the Q1C1 solution, the error
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element ∆Px/P
ex
x dev(Px)/P ex

x ∆Py/P
ex
y dev(Py)/P

ex
y

Q1C1 2.6853% 1.4474% 0.3774% 2.2100%
Q1C2 0.5402% 1.3297% 0.1555% 1.4787%
Q1C4 0.2933% 1.2556% 0.0375% 1.4014%
Q1CH 0.3982% 1.2815% 0.0937% 1.4553%

Table 1: Performance of the enhanced contact elements for the frictional ironing example of
Fig. 4.

∆Px reduces by a factor of 5 for the Q1C2 formulation, by 6.7 for the Q1CH formulation and
by 9.2 for the Q1C4 formulations. The error ∆Py reduces by a factor of 2.4, 4.0 and 10 for
the Q1C2, Q1CH and the Q1C4 formulation, respectively. The enhanced contact elements thus
achieve a substantial improvement compared to the standard Q1C1 formulation. However, the
improvements are not as large as those obtained for the same example considering frictionless
contact (Sauer, 2011). The table also reports the maximum deviation

dev(Pi) := max
{

max
ux

(Pi)− P ex
i , P

ex
i −min

ux
(Pi)

}
, i = x, y (47)

of the oscillatory forces Px and Py from the exact values. This error decreases only slightly for
Px, but more significantly for Py. Essentially, there are still significant errors remaining between
the ‘exact’ results and the results for the enhanced contact formulations. These are caused by
the inaccuracy of the domain discretization rather than by the contact surface discretization.
This can be inferred from the values for dev(Px) and dev(Py), which change only minimally
between the Q1C2, Q1CH and Q1C4 formulation.
Hence, the proposed contact enhancement may not increase the overall accuracy. This should
not be held against the technique, as its primary purpose is to increase the accuracy of the
contact contribution (34) and thereby stabilizing contact computations, especially for coarse
discretizations. Still, the proposed enrichment formulation shows better convergence behavior
as was shown in Sauer (2011) and is also seen in Sec. 4.3.

Remark: A possible source of error could be the locking of the Q1 elements used in the domain.
It would therefore be useful to combine the new contact elements with locking remedies like
enhanced strain formulations (Simo and Armero, 1992).

4.1.3 Contact deformation and stresses

Fig. 6 shows an enlargement of the deformation and stress during sliding. The figure shows large
inaccuracies in the surface deformation for Q1C1 elements, but much more accurate results for
Q1C2, Q1C4 and Q1CH elements. In case of Q1C4 elements large oscillations appear in the
stress field. These also show up in the pressure field (Sec. 4.1.4). For Q1CH elements no such
oscillations appear. These elements are highly accurate and, contrary to the other formulations,
provide a C1-smooth surface representation.

4.1.4 Contact tractions

Fig. 7 shows the contact pressure and shear for the four different contact formulations and
the ‘exact’ result obtained with a dense mesh (32 elements along L0 using Q1CH). The post-
processing scheme of Sec. 3.4 is used for these plots. Note the proportionality of µ = 0.5 between
τ and p. The Q1C1 formulation provides only a coarse representation of the pressure field. The
accuracy is improved for the Q1C2 formulation. However, the pressure turns oscillatory for this
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a. b.

c. d.

Figure 6: Enlargement of the contact deformation and I1 stress according to the: a. Q1C1
formulation; b. Q1C2 formulation.; c. Q1C4 formulation; d. Q1CH formulation. The stress
coloring is the same as in Fig. 4 (ranging from -1.70 E to 0.59 E).

enhancement. This is even worse for the Q1C4 formulation. The Q1CH formulation, on the
other hand, provides a smooth and accurate representation of the contact pressure and shear.
According to definition (43) it is even C1-continuous. The pressure oscillations caused by high-
order Lagrange interpolation (Q1C2 and Q1C4) are similar to those observed by De Lorenzis
et al. (2011) and Temizer et al. (2011).

For a detailed analysis of the accuracy of the different formulations let us examine the relative
L2 error norm

‖∆p̄‖L2 :=

√
1

|∂cB|

∫
∂cB

(
pQ1CX − pexact

)2
dA (48)

obtained over the contact area ∂cB where p 6= 0. These errors are listed in Tab. 2. It can be

element ‖∆p̄‖L2

Q1C1 1.625 10−3

Q1C2 0.818 10−3

Q1C4 1.774 10−3

Q1CH 0.789 10−3

Table 2: L2 error in the pressure field p according to eq. (48) for the various contact formulations.

seen that formulations Q1C2 and Q1CH achieve a much lower pressure error than formulations
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a. b.

c. d.

Figure 7: Contact pressure according to the: a. Q1C1 formulation; b. Q1C2 formulation.; c.
Q1C4 formulation; d. Q1CH formulation. The filled dots show the pressure at the standard FE
nodes, the white dots show the pressure at the enrichment nodes.

Q1C1 and Q1C4.

Remark: During sliding the boundary of the contact surface typically falls within a surface
element, which produces approximation errors at those boundaries. These errors decrease with
the proposed enrichment formulations as Fig. 7 shows. A further accuracy gain can be expected
from considering nodal relocation strategies (Franke et al., 2010).

4.1.5 Surface stretch

We finally examine the surface stretch λs, defined in eq. (4). This is shown in Fig. 8. The
post-processing scheme of Sec. 3.4 is used. Conclusions similar to those for the contact pressure
can be drawn: Q1C1 is quite inaccurate, Q1C2 and Q1C4 are more accurate but oscillatory,
and Q1CH is the most accurate and also C1-smooth. The stretch is important for the accurate
integration of the contact tractions according to eq. (34). It is seen that extreme surface stretch
values occur in the contact zone.

Due to the pressure and stretch oscillations of the Q1C4 formulation, we will disregard this
technique in the following examples, and focus on formulations Q1C1, Q1C2 and Q1CH.
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a. b.

c. d.

Figure 8: Contact surface stretch according to the: a. Q1C1 formulation; b. Q1C2 formulation.;
c. Q1C4 formulation; d. Q1CH formulation. The dark dots show the stretch at the standard
FE nodes, the white dots show the stretch at the enrichment nodes.

4.2 Debonding of two flexible strips

The second example considers the delamination of two flexible strips, a problem also known as
the double cantilever beam (DCB) peeling problem. The setup of the example is shown in Fig. 9.
For both strips the Neo-Hookean material model (33) is considered with E2 = 3E0, E1 = E0

Figure 9: Double strip peeling problem: Initial geometry and boundary conditions.

and ν1 = ν2 = 0.3. The cohesive zone model from Sec. 2.3 is considered to describe debonding.
This model offers only weak resistance to penetration. Therefore the penalty method (Sec. 2.1)
is considered additionally to counter penetration. Instead of expression (6), we now use the
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quadratic force law

tk =

{
εn g

2
nnp for gn < 0

0 for gn ≥ 0
(49)

to get a smooth transition between penetration and separation. For the following computations
the model parameters T0 = 0.2E0, g0 = 0.05L0 and εn = 50E0/L0 are used. The strip
dimensions are taken as L = 20L0, h1 = h2 = L0 and Ld = 5L0. This last parameter
denotes an initial debonding length. Further delamination is induced by the applied vertical
displacement uy. This leads to the peeling behavior shown in Fig. 10. The coloring shows the

I1 = trσ [E0]

Figure 10: DCB peeling: Strip deformation during peeling. Snap-shots shown at uy = 5, 10,
15, 20, 25, 30 and 34.65 L0.

stress I1 = trσ during peeling. Due to the different strip stiffness, the strips rotate during
deformation and therefore tangential peeling tractions are present in the delamination zone. As
Fig. 10 and 12 show, a non-conforming finite element mesh is used to test the computational
performance. The two strips are discretized with 96 × 4 elements (upper strip) and 80 × 4
elements (lower strip).

The example is computed with elements types Q1C1, Q1C2 and Q1CH. Fig. 11 shows the
load-displacement curve Py(uy) during peeling. The enlargement shows that oscillations occur

Figure 11: DCB peeling: load displacement curve: entire view (left); zoomed view (right).

for all three formulations. These oscillations are shown in table 3. Compared to the standard
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element ∆Py

Q1C1 5.3·10−4

Q1C2 1.3·10−4

Q1CH 3.5·10−5

Table 3: Maximum oscillation errors in Py, normalized by E0L0, for the various contact formu-
lations.

Q1C1 formulation, the oscillations reduce by a factor of 4 for the Q1C2 enrichment and even 15
for the Q1CH enrichment. Interestingly, these are the same factors as obtained for the peeling
example of Sauer (2011), which considers a deformable strip on a rigid substrate.

Fig. 12 shows an enlargement of the deformation at uy = 10L0. In contrast to Q1C1, Q1CH

Figure 12: DCB peeling: deformation at uy = 10L0. Q1C1 result (left); Q1CH result (right).

achieves a smooth surface representation. This is essentially the reason why the peeling force
Py is computed much more accurately for the Q1CH formulation.

4.3 Frictionless ironing between deformable bodies

The third example re-examines the ironing problem, now considering both bodies as deformable,
but restricted to the case of frictionless contact. A half-cylinder B1, with radius L0, is pressed
into an elastic block B2 and then moved horizontally across, as is shown in Fig. 13. The size
of the block is 2L0 × 10L0. The bottom surface of the block is fixed, and a periodic boundary
condition is applied at the two vertical boundaries. In this case, the horizontal contact force
Px vanishes in theory. The Neo-Hooke material law (33) is used with E1 = 3E0, E2 = E0, and
ν1 = ν2 = 0.3.
Contact is computed with the penalty method for frictionless contact (Sec. 2.1) using the two-
half-pass algorithm (Sauer and De Lorenzis, 2012). In this reference, the same example was
considered to compare the two-half-pass algorithm to a classical full-pass algorithms. Here we
are interested in analyzing the proposed contact enrichment. In the following computations two
penalty parameters are considered: εn = 100E0/L0 and εn = 1000E0/L0. Sliding friction is
not considered here, since the two-half-pass algorithm has not yet been formulated for frictional
contact.
Four finite elements per L0 are used, and up to nqp = 200 equidistant quadrature points are
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Figure 13: Frictionless ironing between deformable solids: Initial configuration and deformed
configuration. The coloring shows the stress I1 = trσ normalized by E0.

used for the integration of contact integral (34). It is emphasized, that large nqp are only used
to obtain highly accurate results for comparison. This is particularly useful for Q1C1, where the
jumps of the surface normal n at the finite element nodes affect the evaluation of the contact
forces.12 The influence of single jumps decreases as nqp increases. Large nqp are not required
for computational robustness.

Fig. 14 shows a comparison between Q1C1 and Q1CH solutions during sliding for εn = 1000E0/L0

and nqp = 200. For these parameters, the contact penetration is less than 0.0006L0 (taken from
Q1CH), which corresponds to less than 2.5 thousands of L0/4, the reference element length of
the block. As the figure shows, Q1C1 gives quite poor results: unphysical lateral deformations
appear in the block in order to adjust to the cylinder surface. Also, the convergence behavior
for Q1C1 is extremely poor, taking up to 35 Newton iteration steps per load step (50 load
steps per L0 were used for dense output).13 On the other hand, the Q1CH formulation gives
very good results, which are obtained with a maximum of 6 Newton steps. The problem of
over-constraining is completely absent here, even though εn and nqp are very large.

Fig. 15 shows the contact pressure according to Sec. 3.4, for the same εn and nqp. Each plot
shows two curves: the pressure acting on the cylinder (B1) and the pressure acting on the block
(B2). As seen, there is an excellent agreement between the two pressure fields, although this is
not enforced a-priori within formulation (34): The tractions t1 and t2 are computed indepen-
dently, without enforcing any continuity! Note that the contact pressure is much smoother for
the Q1CH formulation. According to definition (43) they are C1-continuous themselves.

Fig. 16 shows the global contact forces during sliding. Due to the FE discretization, these
oscillate with the period L0/4. These oscillations are spurious, and can thus be taken as an
error measure for the different enrichment formulations. As noted in Fig. 15, each case (Q1C1,
Q1C2 and Q1CH) produces two contact forces: P 1, acting on B1, and P 2, acting on B2. Their
difference is a measure for the error in contact formulation (34). The figure shows that this

12An averaging of n, as proposed by Yang et al. (2005) was not considered.
13The active set is considered frozen until a certain threshold is reached during the equilibrium iteration.

During this freeze, the system is severely over-constrained, which leads to the unphysical tangential deformations
seen in the figure.
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Figure 14: Ironing snapshots for Q1C1 (bottom row) and Q1CH (top row) for εn = 1000E0/L0.
The coloring shows I1 and is the same as in Fig. 13. The snapshots are taken at ux = 0.23L0,
ux = 0.28L0 and ux = 0.33L0.

error is larger for Q1C1 than for Q1C2 and Q1CH. The error between P 1 and P 2 decreases as
the penalty parameter increases. On the other hand, the increase in εn leads to an increase in
the oscillation error.

Tab. 4 shows the oscillation error in Px and Py for increasing penalty parameters. Looking

∆P̄x ∆P̄y
element ε̄n = 100 ε̄n = 1000 ε̄n = 100 ε̄n = 1000

Q1C1 12.2e–3 (100%) 57.7e–3 (100%) 9.7e–3 (100%) 12.0e–3 (100%)
Q1C2 0.74e–3 (6.1%) 1.15e–3 (2.0%) 4.5e–3 (46%) 1.56e–3 (13%)
Q1CH 0.77e–3 (6.3%) 1.24e–3 (2.1%) 4.0e–3 (41%) 1.21e–3 (10%)

Table 4: Maximum oscillation errors in Px and Py for the various contact formulations. Here,
ε̄n = εn L0/E0 and ∆P̄ = (maxP −minP )/E0/L0, where the max and min are taken over ux.

at each column one can see that the errors decrease substantially for the Q1C2 and Q1CH
formulation. The decrease is particularly large for ε̄n = 1000, where one finds error reductions
by a factor of 50 (Q1C2) and 47 (Q1CH) for Px and 7.7 (Q1C2) and 9.9 (Q1CH) for Py.
Comparing the Px columns for ε̄n = 100 and ε̄n = 1000, one sees that increasing the penalty
parameter increases the error. This increase is very large for Q1C1, but much less for Q1C2
and Q1CH. Comparing the Py columns, one finds an error increase for Q1C1 and a major error
decrease for Q1C2 and Q1CH.

Finally, Fig. 17 shows the convergence behavior for the refinement of the FE discretizations.
Here, the maximum of |Px| and the maximum and minimum of Py are shown, and ny = 2m is
the number of elements along the height of the block (m = 3 is the mesh shown in Fig. 13).
For an increase of m by 1, each element is subdivided into 4 smaller elements. As seen, the
imbalances in Px and Py vanish for increasing mesh refinement. This is in accordance with the
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Figure 15: Contact pressure at ux = 0 for εn = 1000E0/L0 and nqp = 200 according to the
Q1C1 discretization (left) and the Q1CH discretization (right).

properties of the two-half-pass algorithm (Sauer and De Lorenzis, 2012). Fig. 17 also shows
that the errors in both force components are much lower for Q1CH than for Q1C1. Overall,
Q1CH converges faster. Due to its proportionality to E0/L0 the penalty parameter is taken as
1000, 2000 and 4000 for the three meshes m = 3, m = 4, m = 5 in Fig. 17.

In summary, we again find that the proposed contact enrichment formulations provide a huge
gain in accuracy and robustness.

5 Conclusion

This paper extends the enriched contact formulation of Sauer (2011) to friction and deformable-
deformable contact. The formulation uses local finite element enrichment to increase the ac-
curacy of the contact integrals. It therefore directly affects both the evaluation of the contact
kinematics, based on closest point projection, and the integration of the contact energy over the
contact surface. Here, the contact equations are enforced at the quadrature points using the
two-half-pass algorithm of Sauer and De Lorenzis (2012). The enrichment considered here is
based on high-order Lagrange and Hermite interpolation. The second offers C1-smooth contact
surface representations that are free from the oscillations troubling the high-order Lagrange
enrichment Q1C4. Therefore this approach seems less useful than the other formulations. The
enrichment formulations are characterized by compact support, which leads to compact cou-
pling entries in the resulting contact tangent matrix.
The paper also presents a post-processing scheme for contact quantities like the contact pressure.
The procedure is based on intra-element averaging. For Hermite enrichment highly accurate,
C1-smooth pressure distributions are thus obtained.
Several numerical examples are presented to illustrate the improved behavior of the enrichment
strategies. As for the simpler examples of Sauer (2011), the enrichment leads to a major gain
in accuracy and robustness.

For the future several extensions are planned. One is the development of NURBS based contact
enrichment approaches. These also allow the straight forward extension to 3D contact enrich-
ment. Another extension is the study of friction between two deformable bodies. Therefore, the
contact formulation of Sauer and De Lorenzis (2012) is currently being extended to frictional
contact.
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a. b.

c. d.

Figure 16: Influence of the penalty parameter on the net contact forces Px and Py: a. & c.:
εn = 100E0/L0; b. & d.: εn = 1000E0/L0. Pk (k = 1, 2) denotes the force on Bk.

A Contact tangent matrix

This appendix provides the 2D tangent matrices for the three contact formulations used in the
examples above. All contact quantities are evaluated in the current configuration and therefore
need to be linearized there. For further details see also Sauer and De Lorenzis (2012).

According to eq. (34), the tangent matrices associated with the elemental contact force vector
f eck take the form

keckk = −
∫

Γek

NT
k

∂tk
∂uek

dak −
∫

Γek

NT
k tk ⊗

∂ dak
∂uek

,

keck` = −
∫

Γek

NT
k

∂tk
∂ue`

dak ,
(50)

where
∂tk
∂uek

=
∂tk
∂xk

Nk . (51)
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Figure 17: Ironing problem: Convergence of net contact forces Px (left) and Py (right) for the
Q1C1 and Q1CH formulation.

1. For the normal contact formulation based on the penalty method (Sec. 2.1) we find

∂tk
∂xk

= p′k np ⊗ np + pk
∂np

∂xk
,

∂tk
∂ue`

= −p′k np ⊗ np N` + pk
∂np

∂ue`
,

(52)

with p′k = ∂pk/∂gn = −εn and

∂np

∂xk
=

1

gn

[
I − np ⊗ np − c11ap ⊗ ap

]
,

∂np

∂ue`
= − 1

gn

[
I − np ⊗ np − c11ap ⊗ ap

]
N`(ξp)− c11ap ⊗ np N`,ξ(ξp) ,

(53)

with c11 = 1/a11/(1− gnκp) and a11 = ap · ap =: â2
p, see Sauer and De Lorenzis (2012). Here

κp = np ·
∂āp

∂gt
(54)

denotes the curvature of ∂B` at xp. For a parameterized surface representation, κp can be easily
evaluated from eq. (36). Eq. (53) contains the special cases: (i) projection onto a flat surface
(κp = 0), and (ii) projection onto a corner node (κp =∞). Note that for (i),

∂np

∂xk
= 0 . (55)

Further, from eq. (4) and (38), we have

∂ dak
∂uek

=
∂λs

k

∂uek
dAk =

1

Âk

∂âk
∂uek

dAk . (56)

From the definition âk :=
√
ak · ak and from eq. (36) we find

∂âk
∂xI

=
∂âk
∂ak

∂ak

∂xkI
= ākNI,ξ , (57)
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and thus
∂âk
∂uek

= ākNk,ξ , (58)

so that
∂ dak
∂uek

=
1

âk
ākNk,ξ dak . (59)

2. For frictional contact (Sec. 2.2) we have the additional, tangential traction ttk = τk āp. We
discuss here the case for frictional contact with a rigid neighbor. In this case the tangent matrix
is fully specified by eqs. (50a) and (51). According to eq. (22) we find for sticking,

∂ttk
∂xk

=
∂τ trial

k

∂gt
āp ⊗

∂gt

∂xk
+ τ trial

k

∂āp

∂gt
⊗ ∂gt

∂xk
. (60)

Here we have
∂gt

∂xk
= âp

∂ξp

∂xk
= âp c

11ap (61)

(Sauer and De Lorenzis, 2012). We further find

∂āp

∂gt
= κpnp (62)

from eq. (54) and from the fact that āp ·
∂āp

∂gt
= 0. Together this gives

∂ttk
∂xk

= −εt c11ap ⊗ ap + τ trial
k κp âp c

11np ⊗ ap (63)

for sticking. For sliding we find

∂ttk
∂xk

= µτ̄ trial
k āp ⊗

∂pk
∂xk

+ µ pk āp ⊗
∂τ̄ trial

k

∂xk
+ µ pk τ̄

trial
k

∂āp

∂gt
⊗ ∂gt

∂xk
, (64)

according to eq. (23). The last term is discussed above. The second term vanishes, since τ̄ trial
k is

either equal to 1 or −1 during a sliding increment. For the first term we have ∂pk/xk = p′knp.
In total, we thus have

∂ttk
∂xk

= −εn µ τ̄ trial
k āp ⊗ np + τk κp âp c

11np ⊗ ap (65)

for sliding.

3. Cohesive zone model (Sec. 2.3): Writing T k = Tk ḡ we now have

keckk = −
∫

Γek

NT
k

∂T k
∂xk

Nk dAk ,

keck` = −
∫

Γek

NT
k

∂T k
∂x0

p

N` dAk .
(66)

with
∂T k
∂xk

=
∂Tk
∂g

np ⊗ np + Tk
∂ḡ

∂xk
,

∂tk
∂x0

p

= −T ′k np ⊗ np + Tk
∂ḡ

∂x0
p

,

(67)

and
∂ḡ

∂xk
= − ∂ḡ

∂x0
p

=
1

g

(
I − ḡ ⊗ ḡ

)
. (68)
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B Convergence proof for the proposed post-processing scheme

This appendix provides a proof for eq. (42). For brevity, index k is omitted. Consider a function
f(s) along s that is independent of h, where h is the distance between FE nodes.14 Eq. (42) is
satisfied if the approximate nodal values fI := fp(sI) are equal to f(sI) at all nodal positions
sI . For the considered element classes, the area beneath shape function NI(s) is proportional
to h, i.e. we can write ∫

∂cB
NI(s) ds = ch , c > 0. (69)

(For Q1C1 and Q1CH we have c = 1.) According to definition (41), considered here over the
current area, we then find

lim
h→0

fI = lim
h→0

1

ch

∫
∂cB

NI(s) f(s) ds . (70)

As h→ 0, NI(s)/h approaches a Dirac delta function located at sI . We thus have

lim
h→0

NI(s)

h
f(s) = lim

h→0

NI(s)

h
f(sI) , (71)

since f(s) approaches the constant f(sI) within the support width of NI(s). Therefore

lim
h→0

fI = lim
h→0

1

ch

∫
∂cB

NI(s) ds f(sI) = f(sI) . (72)

�

Acknowledgements

The author is grateful to the German Research Foundation (DFG) for supporting this research
under projects SA1822/5-1 and GSC 111.

References

Crisfield, M. A. and Alfano, G. (2002). Adaptive hierarchical enrichment for delamination
fracture using a decohesive zone model. Int. J. Numer. Meth. Engrg., 54(9):1369–1390.

De Lorenzis, L., Temizer, I., Wriggers, P., and Zavarise, G. (2011). A large deformation frictional
contact formulation using NURBS-based isogeometric analysis. Int. J. Numer. Meth. Engng.,
87:1278–1300.

El-Abbasi, N., Meguid, S. A., and Czekanski, A. (2001). On the modeling of smooth contact
surfaces using cubic splines. Int. J. Numer. Meth. Engng., 50:953–967.

Fischer, K. A. and Wriggers, P. (2005). Frictionless 2D contact formulations for finite deforma-
tions based on the mortar method. Comput. Mech., 36:226–244.
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