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Abstract

This paper presents a detailed finite element analysis of the adhesion of a gecko spatula. The
gecko spatulae form the tips of the gecko foot hairs that transfer the adhesional and frictional
forces between substrate and foot. The analysis is based on a parameterized description of the
three-dimensional geometry of the spatula, that only requires 12 parameters. The adhesion is
described by a non-linear computational contact formulation that accounts for the van der Waals
interaction between spatula and substrate. The spatula adhesion model is implemented using
an enriched contact finite element formulation recently developed by the first author. The finite
element model is then used to simulate the peeling behavior of the gecko spatula under applied
vertical and rotational loading for various model parameters. Considered are variations of the
material stiffness, adhesional strength and range, stiction, spatula size and spatula inclination,
to account for the natural variation of spatula properties. The study demonstrates that the
spatula can function over a wide range of conditions. The computed pull-off forces are in
agreement with experimental results reported in the literature. The study also examines the
energy required for the spatula pull-off. The proposed model is ideal to study the influence of
substrate roughness on the spatula adhesion, as is finally demonstrated.

Keywords: gecko adhesion, van der Waals interaction, computational contact mechanics, non-
linear finite element methods, peeling

1 Introduction

The tokay gecko has developed a remarkable adhesion mechanism that has fascinated and in-
spired people for many years. The toes of the gecko are covered with hundreds of thousands of
micrometer-fine hairs that each branch into hundreds of finer hairs, the so-called spatulae. The
spatulae transfer the adhesive and frictional forces between gecko and substrate, and, due to
their high flexibility, thereby undergo very large mechanical deformations and rotations. The
spatulae thus form an elemental part in the understanding of gecko adhesion. Many models
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have been proposed in the literature to describe the adhesion mechanism of the gecko (Kwaki
and Kim, 2010; Sauer, 2009). But up to now no detailed 3D mechanical model has been con-
sidered to study the behavior of the spatula. To the best of our knowledge, this is the first such
analysis reported in the literature. Due to the non-linearities of large deformations a compu-
tational approach is required. The two major challenges in formulating such a computational
spatula model are the spatula geometry and the adhesion mechanism itself (Sauer, 2010). In
the present paper a detailed but relatively simple 3D parametric model is constructed that
describes the spatula geometry such that shape variations can be accommodated easily. This
new model is a considerable advancement of the structural beam model developed in Sauer
(2009). The spatula geometry is discretized into 3D finite elements using a standard non-linear
continuum formulations to describe the structure and using the contact formulation of Sauer
and Li (2007), Sauer and Wriggers (2009) and Sauer (2011a) to describe the adhesion between
pad and substrate. The proposed model is ideal to study in detail the adhesive contact behavior
of the spatula, like its peeling and detachment behavior, and thereby analyze the stress and
deformation of the structure. Due to the generality of the contact formulation, the model can
also be used to study spatula adhesion on rough surfaces. In this paper, the spatula model is
used to study the pull-off behavior for different model parameters that account for variations
in spatula size, spatula stiffness, strength of adhesion, range of adhesion, surface roughness,
stiction and loading conditions. Such a study is particularly useful since the natural spatula
properties are subject to variation.

The remainder of this paper is structured as follows: Sec. 2 presents the geometric model for the
gecko spatula and discusses its model parameters. The computational contact model used to
describe the adhesion between spatula and substrate is then addressed in Sec. 3. Sec. 4 considers
and analyzes several numerical examples that demonstrate the capabilities of the model and
allow to draw several conclusions on the spatula behavior. The presentation is summarized in
Sec. 5.

2 Modeling the spatula geometry

This section proposes a relatively simple, but detailed 3D model which aims at describing the
spatula geometry realistically and which is then used in the simulations presented in Sec. 4.
The spatula description is based on a parameterized model, so that certain geometrical changes
can be incorporated automatically.

The gecko spatula is a very small, elongated structure, consisting of a very thin flat pad attached
to a cylindrical shaft as is shown in Fig. 1.a. This microscope image is adopted from the work
of Rizzo et al. (2006). The images in this work also indicate a flat contact surface of the pad,
which is considered here4. Further spatula images can be found in Autumn et al. (2000); Arzt
et al. (2003); Huber et al. (2005); Autumn et al. (2006); Tian et al. (2006). The shaft diameter
is on the order of 100 nm and tends to be tapered towards the pad. The pad is very thin,
typically only around 10 nm thick, which gives it great flexibility to adapt to the roughness of
the substrate it attaches to. The rim of the pad is considerably thicker, probably to give the
entire structure higher stability. Fig. 1.b shows the idealized spatula model that is proposed
here. The model captures the essential details of the geometry of the spatula shaft, pad and
rim geometry. The geometric model is based on a set of parameters and construction rules
discussed in the following. This description is an advancement of the description considered in
Sauer (2009), which models the spatula as a 2D beam with varying cross-section . The new 3D
spatula model is shown schematically in Fig. 2. The geometry is based on 15 points, denoted

4Further measurements are called for in order to determine the details of the spatula geometry
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a. b.

Figure 1: The gecko spatula: microscope image (left; adopted with permission from J. R. Soc.
Interface (Rizzo et al., 2006)) and idealized 3D model considered here (right).

P1 to P15, which are defined in Tab. 1, and on the following related geometrical parameters:

• cs, the radius of the circular cross-section of the shaft end face (at P1),
• as and bs, the half-widths of the elliptical shaft cross-section at location P2, the designated

connection between shaft and pad,
• `s, the shaft length measured along the center axis from the end face (at P1) to the

connection at P2,
• θs, the inclination of the center axis of the shaft w.r.t. the {X,Y }-plane,
• r5, the radius that describes the Z-coordinate of the curve passing through P2 to P7,
• `p, the pad length (the X-distance between P2 and P7),
• wp, the pad width (the Y -diameter of the pad at P13 up to the arc through P5 and P6),
• hp, the pad thickness,
• hr, the rim thickness at the tip (chosen here as hr = 2hp),
• the pad corner radii r1 (the distance from P13 to P5), r2 (the distance from P13 to P9), r3

(the distance from P14 to P4) and r4 (the distance from P14 to P10).

To facilitate the description of the spatula geometry, it is broken into four parts, denoted PI,
PII, PIII and PIV, as shown in Fig. 2. These parts are then also used for the meshing discussed
below (see Fig. 3). A detailed description of the geometry of parts PI, PII, PIII and PIV is
given in Appendix A. The coordinates of points P1 to P15, used here, are given in Tab. 1.
These coordinates follow from the choice of the model parameters given in Tab. 2. From these
parameters follows r5 = 4081 nm and θs = 4.91◦. Choosing other parameters will lead to
different spatula shapes.

The spatula geometry is meshed using hexahedral tri-linear solid finite elements as is shown
in Fig. 3. To avoid excessive mesh distortion at point P2, the boundary between part PI and
PIII has be slightly shifted along the X-axis at this point. This shift only affects the mesh but
not the spatula geometry. Care is needed to ensure that all the finite element nodes connect to
each other properly at the interfaces between the four parts. For this study three different mesh
densities were initially considered. The number of elements for each is shown in Tab. 3. The
contact surface of the pad is formed by the bottom surface of parts PII, PIII and PIV, where
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Figure 2: Side view (top row) and top view (bottom row) of the proposed spatula geometry
model. Points P1 to P14 are defined in Tab. 1. Regions PII and PIV form the pad; regions PI

and PIII form the shaft and the rim of the pad.

Z = 0 (see Fig. 2). The finite elements located on this surface are used to describe the adhesion
between pad and substrate according to the 3D formulation of Sauer and Wriggers (2009).
The total number of contact elements in the mesh is provided in Tab. 3 along with the largest
characteristic element size among those contact surface elements. It turns out that the first two
meshes are inadequate to describe the adhesion forces properly: The computations are not stable
and therefore fail.5 The mesh density on the contact surface is simply too coarse to capture the
adhesion forces adequately: According to the adhesion parameters considered here (see Sec. 3)
the maximum attraction occurs at a surface distance of 0.306 nm (Sauer and Wriggers, 2009).
Therefore, even the fine mesh may produce poor results during peeling computations (Sauer,
2011a). One possibility is to use even finer meshes, for example by subdividing each hexahedral
element into 8 new elements, so that the maximum contact diameter will be halved. However this
will increase the computational cost dramatically. A much better and highly efficient strategy is
to enrich the finite element approximation on the contact surface as proposed in Sauer (2011a).
This contact enrichment technique, which is used here, is outlined in the following section. The
enrichment formulation does not change the total number of elements.

3 The adhesion formulation

This section outlines the computational formulation used to model van der Waals adhesion
between the gecko spatula pad and a rigid substrate. The formulation is based on the contact
model of Sauer and Li (2007). The Lennard-Jones potential is used to describe the van der Waals
interaction between the molecules of the neighboring bodies. In this case, the adhesive contact
tractions acting on the deformed spatula pad B1, due to the interaction with the substrate B2,

5Even though the coarse and medium meshes are not suitable to capture adhesion they can be employed to
study the structural properties of the spatula, like its vibration modes (Sauer, 2012b).
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X [nm] Y [nm] Z [nm]
P1 -647.6 0.0 80.6
P2 0.0 0.0 25.0
P3 83.8 36.2 18.7
P4 117.0 50.5 16.6
P5 280.2 120.9 10.6
P6 350.0 75.0 10.0
P7 350.0 0.0 20.0
P8 330.0 0.0 10.0
P9 288.1 102.5 10.0
P10 128.9 23.0 10.0
P11 113.8 0.0 10.0
P12 83.8 0.0 37.3
P13 300.0 75.0 -
P14 138.8 0.0 -
P15 350 - 4,091

Table 1: Coordinates of the points displayed in Fig. 2.

shaft as = 25, bs = 45, cs = 60, `s = 650
pad `p = 350, hp = 10, hr = 20, wp = 250
radii r1 = 50, r2 = 30, r3 = 55, r4 = 25

Table 2: Geometric parameters of the spatula model, in units of nanometers.

are given by

t1(rs,n2) = πβ1β2εr
3
0

[
f1

45

(r0

rs

)9
− f2

3

(r0

rs

)3
]

cosα1n2 . (1)

At a given surface location xs on the spatula pad, the traction t1 depends on the distance, rs,
and surface orientation, n2, of the neighboring substrate surface ∂B2. For flat substrate surfaces,
direction n2 is constant and the distance rs can be easily evaluated. α1 denotes the relative angle
between the two surfaces of B1 and B2, which, in general, are not parallel. This, for example,
is the case in the peeling zone. The two factors f1 and f2 dependent on the surface curvature
of the substrate surfaces (Sauer and Wriggers, 2009). For a flat or only moderately curved
substrate surface, as considered in the examples in Sec. 4, we have f1 ≈ f2 ≈ 1. Expression (1)
can be derived from the global interaction energy (Sauer and Wriggers, 2009)

Πc =
∫
B1

∫
B2

β1β2 φ(r) dv2 dv1 , (2)

where βk is the current molecular density of body Bk, and where φ denotes the Lennard-Jones
potential

φ(r) := ε
(r0

r

)12
− 2ε

(r0

r

)6
, (3)

that governs the interaction between two molecules separated by r and depends on two material
parameters: The length scale r0 and the energy scale ε. In principle the contact tractions
according to (1) are valid for arbitrarily separated and oriented surface elements. For actual
computations, however, it is useful to consider a cut-off radius for the surface distance rs,
beyond which the adhesion forces are neglected. According to formulation (1), the local contact
tractions acting on the spatula pad are normal to the substrate surface, i.e. t1 is parallel to
n2. For perfectly smooth substrate surfaces the model is thus frictionless. Sliding and sticking
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Figure 3: Finite element discretization of the spatula end face using the fine mesh of Tab. 3
(left); FE discretization of the four spatula parts using the coarse mesh of Tab. 3 (right). For
the medium and fine mesh every surface element of the pad is broken into 4× 4 and 8× 8 new
elements.

PI PII PIII PIV total contact diameter
coarse 228 168 12 376 784 139 22.39
medium 912 2,688 192 6,016 9,808 2,224 5.71
fine 12,768 26,880 1,920 60,160 101,728 8,896 2.87

Table 3: Number of solid elements and contact elements in the FE model (for half of the
spatula); largest diameter of the contact elements (in nanometers).

friction can be modeled considering a rough substrate surface and dissipative material response
(Wriggers and Reinelt, 2009). Such an approach is outside the scope of the present study.
Alternatively, tangential sticking forces can also be modeled by a cohesive interface law (Xu
and Needleman, 1993). The peeling examples in Sec. 4 are chosen such that no tangential
loading is present in the contact interface. It is shown that for these loading cases sticking
forces play a negligible role in the peeling behavior.

For the present study, we consider a rigid substrate and quasi-static behavior. In this case the
weak form governing the mechanical behavior of the spatula is given by∫

B1

grad(δϕ1) : σ1 dv1 −
∫
∂B1

δϕ1 · t1 da1 − δΠext,1 = 0 ∀ δϕ1 ∈ V1 , (4)

where V1 denotes the space of kinematically admissible variations δϕ1 and where δΠext,1 ac-
counts for external forces prescribed on the spatula, which are considered zero in all following
examples, i.e. δΠext,1 = 0. The first contribution denotes the internal virtual work of the
Cauchy stress σ1, which is derived from the potential

Πint =
∫
B01

W1(F 1) dV1 , (5)

where W1 denotes the stored energy function of body B1, which depends on the deformation
gradient F 1 = ∂ϕ1/∂X1 of the deformation x1 = ϕ1(X1) of B1. The stress tensor σ1 is then
obtained as

σ1 =
1
J1

∂W1

∂F 1
F T

1 , (6)
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where J1 = detF 1. In this paper a nonlinear, Neo-Hookean material model of the form

W1 =
Λ
2

(ln J1)2 +
µ

2

(
tr
(
F 1F

T
1

)
− 3
)
− µ ln J1 , (7)

is considered. The Lamé parameters Λ and µ can be obtained from Young’s modulus E and
Poisson’s ratio ν using

µ =
E

2(1 + ν)
, Λ =

2µν
1− 2ν

. (8)

For the Neo-Hooke material model the Cauchy stress tensor follows as

σ1 =
Λ
J1

ln J1 I +
µ

J1

(
F 1F

T
1 − I

)
, (9)

where I denotes the identity tensor. The adhesion model according to eqs. (4), (9) and (1) is a
nonlinear deformation model that fully accounts for the geometrical and material nonlinearities
of large deformations. It can be viewed as a coupling of the elastic deformation with the
intersurface adhesion forces. It is solved simultaneously for the unknown spatula deformation
ϕ1. Therefore, boundary conditions need to be provided. In the examples of Sec. 4, the
following two sets of boundary conditions are considered:

1. Applying a rotation at the end face of the shaft while considering a zero net force acting
on the end face.

2. Applying a displacement at the end face, which is normal to the substrate surface, while
considering a zero net moment acting on the end face.

These conditions are useful since they allow the investigation of the spatula response for different
shaft positions and inclinations, as they would, in reality, be determined by the gecko seta and
gecko foot, where the spatulae are attached to.

Given a finite element discretization of the pad surface, the force vector acting on the ne nodes
of surface element Γe is given by (Sauer and Wriggers, 2009)

f ec := −
∫

Γe

NT
e t1 da1 , (10)

where
Ne =

[
N1 I , N2 I , ... , Nne I

]
(11)

is a (3×3ne) matrix formed by the ne shape functions NI (I = 1, 2, ..., ne) of the surface element.
Integration (10) is carried out over the current (i.e. deformed) configuration of the pad surface.
Alternatively, the integral can be transformed to the undeformed reference configuration using
Nanson’s formula

n1 da1 = J1 F
−T
1 N1 dA1 , (12)

where dA1 denotes a surface element with the orientation N1 in the undeformed reference
configuration, and da1 denotes the corresponding surface element with the orientation n1 in
the deformed configuration. With (12), the finite element force vector becomes

f ec := −
∫

Γe0

NT
e T 1 dA1 , (13)

where Γe0 denotes the undeformed configuration of the surface element. The traction T 1, which
follows from eq. (1), is given by (Sauer and Wriggers, 2009)

T 1 := πβ01β`εr
3
0

[
1
45

(r0

rs

)9
− 1

3

(r0

rs

)3
]
θ1n2 (14)
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with
θ1 := −n2 · F−T1 N1 . (15)

As shown in Sauer and Wriggers (2009), the parameter θ1 can be approximated as θ1 = 1 for even
moderately strong adhesion, as is the case for gecko adhesion. Introducing Hamaker’s constant
AH = 2π2β01β02εr

6
0 (Israelachvili, 1991), where β0k = Jkβk denotes the particle density in the

undeformed reference configuration B0k (k = 1, 2), the traction T 1 can then also be written as

T 1 =
AH

2πr3
0J2

[
1
45

(r0

rs

)9
− 1

3

(r0

rs

)3
]
n2 . (16)

Since the substrate is considered rigid, we have J2 = 1.

The stiffness matrix associated with the force vector f ec is given by the symmetric, (3ne × 3ne)
matrix (Sauer and Wriggers, 2009)

kec = −
∫

Γe0

NT
e

∂T 1

∂x1
Ne dA1 , (17)

with
∂T 1

∂x1
= − AH

2πr4
0

[
1
5

(r0

rs

)10
−
(r0

rs

)4
]
n2 ⊗ n2 . (18)

This expression is only valid for rigid, flat substrate surfaces with θ1 = 1, as is considered here.
In general, further terms are picked up, as is shown in Sauer (2012a). There, the finite element
algorithm, used to solve the present contact formulation, is also discussed.

The model, governed by eq. (4), is mainly characterized by two material parameters, the ratios

γL =
R0

r0
, γW =

W0

w0
, (19)

which can be identified from a normalization of eq. (4) (Sauer and Li, 2008). The length R0

is a global length scale used to normalize the spatula geometry. γL then characterizes the
overall size of the spatula with respect to the range of adhesion. W0 and w0 denote two energy
densities that correspond to the energy stored in the elastic deformation and in the adhesion.
The densities can be defined as

W0 = E , w0 =
AH

2π2r3
0

, (20)

where E and AH denote Young’s modulus and Hamaker’s constant. According to the definition
of Hamaker’s constant, w0 can also be written as w0 = β01β02εr

3
0. γW characterizes the strength

of adhesion in relation to the stiffness of the spatula: For smaller γW the adhesion becomes
stronger. The basic material parameters used in the following examples are E = 2 GPa, ν = 0.2,
AH = 10−19 J and r0 = 0.4 nm, which correspond to the values considered by previous authors
(Israelachvili, 1991; Tian et al., 2006; Sauer, 2009). Setting R0 = 1 nm we thus have

γL0 = 2.5 , γW0 = 25.266 . (21)

The subscript ‘0’ is used to distinguish this particular choice from the variations examined in
Sec. 4.4.

The presented three-dimensional spatula model is capable of capturing the details of the contact
behavior. This is shown in Fig. 4, which visualizes the stress component I1 = trσ on the spatula
surface considering the model parameters γL = γL0 and γW = γW0. It can be seen that strong
adhesive stresses appear in a very narrow band which indicates the location of the peeling zone.
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Figure 4: Adhesive contact stresses at the underside of the spatula pad for a shaft inclination
of 45◦ (see section 4). The colors show the stress component I1 = trσ in the same scale used
in Fig. 5. Shown is the undeformed spatula configuration.

The maximum adhesive surface traction that occurs in the peeling zone is given by the global
minimum of expression (1), which is

tmin = ‖t1(rmin)‖ =
√

5
AH

9πJ1r3
0

, rmin = 6
√

1/5 r0 . (22)

Here, the parameter J1 = detF 1 describes the volume change of the deformation of the pad.
Since the pad is usually stretched in the peeling zone, we can expect that J1 ≥ 1 there, and
we can obtain an upper bound on the maximum peeling stress by setting J1 = 1 in eq. (22).
Fig. 4 shows that the presented adhesion model constitutes a more detailed model formulation
than the analytical models of Johnson et al. (1971) and Kendall (1975), which are formulated
for elastic spheres and thin films. Since the spatula structure is neither a sphere nor a thin
film (the thickness has a strong influence on spatula peeling (Sauer, 2011b)), the Johnson et al.
model over- and the Kendall model underestimates the peeling forces.

Since the strongest peeling forces are only located within a very narrow band, a sufficiently
fine finite element surface discretization is needed in order to resolve the peeling forces and
thus compute the peeling process accurately. If the mesh is too coarse, the computations
become inaccurate and possibly also unstable (Sauer, 2011a). Instead of simply refining the
finite element mesh within the peeling zone, one can also consider an enrichment of the contact
surface description (Sauer, 2011a). Such a formulation produces highly accurate contact forces,
while the overall numerical cost is still kept very low. The simplest enrichment idea is to use
quadratic interpolation on the contact surface but standard linear interpolation everywhere else.
This finite element contact formulation is denoted as Q1C2 in Sauer (2011a). A standard finite
element formulation, that uses linear interpolation on the contact surface and elsewhere, would
then correspond to a Q1C1 element formulation. The enriched contact element formulation
Q1C2 is used for all computations presented here.

As a final consideration, the energy required to remove the adhering spatula from the substrate
is discussed. This energy can be computed from the work of adhesion wadh,∞ that is defined as
(Israelachvili, 1991)

wadh,∞ := −
∫ ∞
req

‖T 1‖drs = 3
√

15
AH

16πr2
0

, (23)

i.e. it denotes the work required to remove two bodies with reference contact surface dA from
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the equilibrium position rs = req (where ‖T 1‖ = 0) to rs = ∞.6 The energy required to
completely remove the spatula from the substrate then follows from integrating wadh,∞ over the
total, undeformed surface area adhering to the substrate, denoted as Ac. We thus obtain the
limit value Πc,0 := Acwadh,∞. For the spatula model described in Sec. 3, the entire contact
area is Ac = 49, 524R2

0. For the parameters considered here, we thus find Πc,0 = 759.3ER3
0.7

It is noted that the true energy required to remove the adhering spatula can be considerably
larger, i.e. Πc,0 is only a lower bound, since some energy will be dissipated in the system. The
quantity Πc,0 corresponds to (the absolute value of) the minimum of potential Πc (2), which is
attained for the initial configuration of the adhering spatula. As the spatula is removed from
the substrate, Πc thus increases from −Πc,0 to 0. The amount of external work required for the
removal process, which is stored in the adhesion interface, is thus given as

Πsa = Πc,0 + Πc . (24)

As the spatula is removed from the substrate, Πsa increases from 0 to Πc,0. This can be seen in
the numerical examples considered in the following section. For conservative systems we then
have Πext = Πint +Πsa, where Πext denotes the external work applied for the removal process. It
is fully recovered upon unloading. (For non-conservative systems a part of Πext is not recovered
upon unloading.)

4 The adhesion behavior

This section discusses the adhesive behavior of the gecko spatula for a range of different loading
conditions and model parameters. The first case studies the peeling of the spatula by applying
a rotation to the shaft. The second case studies the spatula detachment by an applied displace-
ment. Various shaft inclinations and adhesion parameters are therefore considered. Finally, to
demonstrate the capabilities of the presented spatula model, the adhesion of the spatula to a
rough surface is examined. The subscripts used in the following correspond to the coordinate
system introduced in Sec. 2: θy and My denote the rotation and moment component in the
y-direction, which is the direction perpendicular to the shaft axis and parallel to the substrate
surface; uz and Pz denote the displacement and force component in the direction normal to the
substrate surface.

4.1 Spatula peeling by an applied rotation

By applying a rotation to the end face of the shaft, the spatula peels-off the substrate, as is
shown in Fig. 5. In this case, the end face of the shaft is considered free to move in the z-
direction. Due to the symmetry of the system, only half of the spatula is modeled. At the
peeling front large tensile stresses develop on the bottom surface of the pad while compressive
bending stresses occur on the top. The computation shows the advancement of the peeling front
across the pad surface. In the initially undeformed configuration the shaft has an inclination of
θy = θs = 4.91◦ (see Sec. 2). For the considered parameters, the shaft can support rotations up
to 130◦ before detachment.

Fig. 6 shows the moment My that is required to apply the rotation. The moment during

6Strictly, this parameter can only be used to describe surface regions that have fully separated from the
substrate. For regions that have only partially separated, the work of adhesion also depends on the inclination
of the surface (Sauer, 2011b).

7In the computations reported here, the contact force T 1 is modified in the compression regime, in order to
regularize the function for low rs (Sauer, 2011a). Due to this modification the actual value is Πc,0 = 761.5 ER3

0.
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Figure 5: Spatula peeling due to an applied rotation of the shaft: Top view on the left, bottom
view on the right. Shown are the configurations for prescribed shaft inclinations of θy = 4.9◦,
31◦ (twice), 60◦, 90◦, 120◦. The colors show I1 = trσ normalized by Young’s modulus E.

peeling is not constant as is the case for thin films with constant thickness (Sauer, 2011b). At
an inclination of 31◦ the moment drops sharply due to an instability in the system: At the
connection between spatula shaft and pad the bending stiffness decreases quite abruptly, which
causes the shown moment drop. In Fig. 6, the moment My is normalized by ER3

0. Given the
model parameters considered here (E = 2 GPa, R0 = 1 nm), we have ER3

0 = 2 nNnm.

The external work that is applied on the structure corresponds to the area under the My(θy)
curve, i.e.

Πext(θy) =
∫ θy

θs

My(θ̄y) dθ̄y . (25)

This work is stored in the elastic strain energy Πint and in the adhesion energy Πsa defined
in eqs. (5) and (24). Tab. 4 shows the values of Πext, Πint and Πsa relative to the maximum
adhesion energy Πc,0 given in Sec. 3. As expected Πint + Πsa = Πext (up to a numerical error of

θy Πext/Πc,0 Πint/Πc,0 Πsa/Πc,0

30◦ 0.237 0.222 0.013
31◦− 0.255 0.232 0.021
31◦+ 0.255 0.182 0.071
60◦ 0.689 0.395 0.291
90◦ 1.088 0.545 0.540
120◦ 1.455 0.728 0.724
128◦ 1.551 0.738 0.811

Table 4: Applied external work Πext and stored energies Πint and Πsa for different shaft incli-
nations θy. For E = 2 GPa and R0 = 1 nm we have Πc,0 = 1.523 · 10−15J .

about 0.002 Πc,0). It can be seen that for low θy, nearly all the applied energy is transformed
into elastic energy Πint. Beyond the instability the amount of applied energy that is transformed
into the contact energy Πsa increases strongly. At detachment (θy = 128◦), the contact energy is
still not saturated (Πsa < Πc,0): About 19% of the pad is still adhering to the substrate. When
the spatula detaches from the substrate, the energy Πint will be released, leading to the vibration
of the structure. We note that the stored contact energy Πsa is approximately proportional to
the region of the pad that has detached. However, it is not exactly proportional since, due to
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Figure 6: Moment-rotation curve for peeling by an applied rotation. The white dots mark the
six configurations shown in Fig. 5. An instability occurs at θy = 31◦.

the long range van der Waals interaction, parts of the separated pad will still contribute to the
adhesion.

4.2 Spatula peeling force for various shaft inclinations

The spatula can also be detached from the substrate by considering a displacement uz normal
to the substrate surface. This is analyzed here for various fixed shaft inclinations (i.e. a fixed
rotation is maintained at the end face). These pre-rotated starting configurations are taken from
the computation reported in the previous section. They account for different relative positions
between spatula shaft and substrate and thus account for either inclined spatulae or locally
slanted substrate surfaces.

Fig. 7 shows the deformation of the spatula during pull-off for a fixed end face rotation of
60◦. The stresses inside the structure are lower than in the case of peeling by rotation. The
force Pz, required to apply the displacement uz, is shown in Fig. 8 for the shaft inclinations
θy = 45◦, 60◦, 75◦ and θy = 90◦. Here, the coordinate uz measures the z-displacement of the
center of the shaft end face starting from the completely undeformed configuration. In each
case the pull-off force8 increases almost linearly up to a maximum value, which is reached just
prior to detachment. These maximum pull-off forces lie in the range between 4 nN and 8 nN,
and they decrease with increasing θy. These results are in agreement to the measured forces
of Huber et al. (2005) and Sun et al. (2005) and to the computational result of Sauer (2009),
which is based on a reduced beam model for the spatula. The pull-off force during peeling is
not constant as is the case for thin films with negligible thickness (Kendall, 1975).

Additional external work is required to pull-off the spatula from the considered pre-rotated
configurations. It is equal to the area under the load-displacement curve, i.e.

∆Πext(uz) =
∫ uz

u0

Pz(ūz) dūz . (26)

8Here, the terminology ‘pull-off force’ is used to denote the varying, displacement-dependent force during the
pull-off process.

12



Figure 7: Spatula deformation for an applied vertical pull-off displacement uz considering a
fixed shaft inclination of θy = 60◦. The colorscale shows I1 = trσ normalized by E.

where u0 denotes the pre-rotated initial configuration (where Pz = 0). The values of ∆Πext

are given in Tab. 5 together with stored energies Πint and Πsa. As expected Πint + Πsa =

θy Πext,0/Πc,0 ∆Πext/Πc,0 Πext/Πc,0 Πint/Πc,0 Πsa/Πc,0

45◦ 0.463 0.720 1.184 0.316 0.865
60◦ 0.689 0.460 1.149 0.242 0.905
75◦ 0.897 0.277 1.174 0.249 0.923
90◦ 1.088 0.154 1.242 0.319 0.920

Table 5: Applied additional work ∆Πext and total stored energy Πint and Πsa prior to de-
tachment considering an applied vertical displacement uz and fixed shaft inclinations θy. For
E = 2 GPa and R0 = 1 nm we have Πc,0 = 1.523 · 10−15J .

Πext,0 + ∆Πext := Πext (up to a numerical error of about 0.002 Πc,0), where Πext,0 denotes the
work of the pre-applied rotation. The concrete values of the applied pull-off work ∆Πext are
shown in Tab. 6. This table also provides the concrete values of the maximum pull-off force and
the displacement at detachment. It can be seen that these measures decrease with increasing θy.

4.3 Influence of tangential stiction forces

The computational results shown in the previous section consider frictionless contact behavior.
Frictional contact forces are activated if relative tangential motion occurs across the contact
interface. In the following, a simple frictional contact model is considered and it is shown that
its influence on the considered peeling behavior is very small. Contact law (16), considered so
far, only provides a normal contact force based on the normal contact distance rs. As a simple
extension, consider

T 1 =
AH

2πr3
0

[
1
45

( r0

rk0

)9
− 1

3

( r0

rk0

)3
]
r̄k0 , (27)
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Figure 8: Spatula pull-off force Pz in dependance of uz for various shaft inclination angles θy.
The white points for θy = 60◦ mark the four configurations shown in Fig. 7.

θy Pmax [nN] ∆uz [nm] ∆Πext [10−18J ]
45◦ 7.63 248 1097
60◦ 6.67 185 701
75◦ 5.59 125 422
90◦ 4.40 80 235

Table 6: Pull-off forces Pmax, pull-off displacements ∆uz (at detachment) and pull-off work
∆Πext for different shaft inclinations θy.

where rk0 =
√
r2

s + r2
a denotes the overall distance surface point x1 has moved in normal and

tangential direction (contributions rs and ra) and r̄k0 denotes the normalized direction along
rk0. As long as ra = 0, contact laws (27) and (16) are equal. For ra 6= 0, tangential contact
forces are generated. The force separation law of these forces is the same as for the normal
forces. This is similar to cohesive zone models with equal behavior in mode I and mode II
separation. This implies that the separation energy is equal for both modes. Contact law (27),
contrary to contact law (16), is unstable in compression (Sauer and Li, 2007). Therefore a
penalty-type contact formulation, active only for compression, is included in the description.
Fig. 9 shows the pull-off behavior of the spatula model for frictional contact according to eq. (27)
compared to the frictionless result from Sec. 4.2. As seen, the friction forces hardly affects the
peeling curve. At the beginning, the peeling forces are larger, but then later they become lower.
The maximum pull-off force is now 6.45 nN instead of 6.67 nN. The small difference is perhaps
not so surprising, since the considered vertical loading predominantly triggers mode I behavior,
which is already captured in the original contact law (16). The fact that the maximum pull-off
force has only decreased by 3.4% implies that tangential interface motions reduce the normal
adhesion forces by a similar amount in contact law (27). The pull-off work ∆Πext for both cases
is 0.70 · 10−15J.

The friction study shows that frictional contact forces have a minor and negligible effect on
peeling by vertical loading. Therefore, contact law (16) is considered for the remaining com-
putations. The situation can be expected to change once a horizontal loading component is
considered. In this case very large tangential contact forces may occur so that one needs to de-
velop a sliding friction formulation for adhesive contact. This will be studied in future research.
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Figure 9: Spatula pull-off force Pz(∆uz) for vertical peeling with frictional and frictionless
contact. A shaft inclination angle of θy = 60◦ is considered.

4.4 Spatula peeling force for various material parameters

Sec. 4.2 investigates the pull-off behavior of the spatula for different shaft inclinations. Now,
the inclination is kept fixed at 60◦, and different values for the material parameters γL are γW ,
defined in eq. (19), are considered. This study is useful to cover the uncertainties in the spatula
stiffness, adhesion and size. Increasing γW by a factor of c corresponds to either increasing the
spatula stiffness by the factor c or decreasing the adhesion forces by the factor c. Increasing γL
by a factor of c corresponds to either increasing the spatula size by c or decreasing the range
of adhesion by c. Here, the seven cases γW /γW0 = 1.5−1, 1, 1.5, 1.52, for fixed γL/γL0 = 1,
and γL/γL0 = 1.5−2, 1.5−1, 1, 1.5, for fixed γW /γW0 = 1, are considered. Their influence on
the pull-off curves is shown in Fig. 10. The white points mark the maximum and zero force

Figure 10: Load displacement curves for different adhesion parameters γW (left) and for different
length scales γL (right) expressed as multiples of γW0 = 25.266 and γL0 = 2.5. The shaft
inclination is kept fixed at θy = 60◦.

configurations shown in Figs. 11 and 12 below. As before, the coordinate ∆uz measures the z-
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displacement of the center of the shaft end face from the completely undeformed configuration.
The curves show that the pull-off force and energy increases for decreasing γW and γL. It is
emphasized that this increase is not proportional to γ−1

W or γ−1
L due to the non-linearities of

large deformations. It also seems that there is no combined parameter γC , that describes the
influence of both γW or γL, as in the case for the adhesion of spheres (Sauer and Li, 2008). A
detailed analysis of the seven different cases is given in Tabs. 7 and 8. The maximum pull-off

γW /γW0 Pmax [nN] ∆uz [nm] ∆Πext [10−18J ]
1.5−1 10.38 238 1365
1 6.67 185 701
1.5 4.05 134 317
1.52 2.18 90 107

Table 7: Pull-off force, displacement and work for different adhesion parameters γW , considering
γL = γL0 and θy = 60◦

γL/γL0 Pmax [nN] ∆uz [nm] ∆Πext [10−18J ]
1.5−2 15.78 285 2424
1.5−1 10.36 237 1368
1 6.67 185 701
1.5 4.09 135 323

Table 8: Pull-off force, displacement and work for different adhesion parameters γL, considering
γW = γW0 and θy = 60◦.

forces lie in the range between 2 nN and 16 nN, which agrees well with the range observed by
Huber et al. (2005) and Sun et al. (2005). The pull-off energy (per spatula) lies in the range of
0.1 · 10−15 J to 2.5 · 10−15 J.

Fig. 11 compares the spatula deformation and stress at Pz = 0 and Pz = Pmax for the four con-
sidered adhesion parameters γW /γW0 = 1.5−1, 1, 1.5, 1.52. As can be expected, the deformation
and stress increase as the strength of adhesion increases (for decreasing γW ). In particular, the
pad area adhering to the substrate for Pz = 0, increases. Note that decreasing γW can also be
viewed as decreasing the material stiffness. The maximum peeling stress at the underside of the
pad, which is given by eq. (22), is proportional to γ−1

W . However, this proportionality does not
extend to Pmax, ∆uz and ∆Πext, as is seen from Tab. 7. It becomes clear from these results,
that the spatula will not function anymore if the adhesion is too weak or the material too stiff.
In the present example (shaft inclination of 60◦), the case γW = 1.52γW0 is probably already
too weak to represent a useful spatula design. On the other hand, strong adhesion produces
very large stresses and strains in the spatula structure, which may eventually cause the rupture
of the structure. In current research, failure mechanisms of the spatula, and also the gecko seta,
remain open topics.

Analogously to Fig. 11, Fig. 12 shows the spatula deformation and stress at Pz = 0 and Pz =
Pmax for the four considered length scales γL/γL0 = 1.5−2, 1.5−1, 1, 1.5. Here, the geometry is
normalized by R0, so that the four different spatulae appear equally large. The actual relative
sizes differ substantially. In this case, the deformation and stress increases for decreasing spatula
size (decreasing γL). Then, also the relative pad area adhering to the substrate for Pz = 0,
increases. Note that decreasing γL can also be viewed as increasing the range of adhesion r0.
The maximum peeling stress at the underside of the pad (see eq. (22)), is also proportional
to γ−1

L . But again, this proportionality does not extend to Pmax, ∆uz and ∆Πext, as is seen
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a. b.

Figure 11: Spatula deformation for various γW : a. initial, pre-rotated configuration (Pz = 0);
b. deformation at maximum peeling force (Pz = Pmax). In both (a) and (b), γW decreases from
left to right. The lower images show the bottom view of the spatula pad. The colorscale shows
I1 = trσ, normalized by E.

from Tab. 8. If the size of the spatula becomes too large, it will lose its functionality due to its
increased stiffness. Too small spatula sizes, on the other lead to large stresses and strains.

4.5 Spatula adhesion to a rough substrate

The results presented so far consider a perfectly smooth substrate surface. Realistically, this
surface will be characterized by some form of roughness. The detailedness of the presented
spatula model is ideal to investigate the influence of this roughness on the adhesion properties
of the spatula. As a numerical example, which demonstrates the remarkable adhesion strength
of the spatula, we consider the adhesion of the spatula pad to an idealized, rough surface. The
roughness of this surface is constructed as a superposition of single asperities that are described
by the exponential function

z(x, y) = z0 exp
(
− x2 + y2

h2

)
. (28)

Here the parameter h is a length scale that describes the sharpness of the asperity: large h
characterize relatively flat waves, whereas small h characterize relatively sharp spikes. The
asperities are considered to have equal height z0 and are arranged in a triangular grid as is
shown in Fig. 13. This surface can be quite easily incorporated into the contact algorithm of
the considered adhesion model (Sauer and Wriggers, 2009). A closest point projection has to
be carried out for every surface point of the spatula pad, in order to obtain the distance and
direction of the neighboring substrate, which are needed for eq. (16).
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a. b.

Figure 12: Spatula deformation for various γL: a. initial, pre-rotated configuration (Pz = 0);
b. deformation at maximum peeling force (Pz = Pmax). In both (a) and (b), γL increases from
left to right. The lower images show the bottom view of the spatula pad. The colorscale shows
I1 = trσ normalized by E.

Fig. 14 shows the contact deformation and stresses for a spatula adhering to the surface shown
in Fig. 13. Three different roughness levels, z0 = 0, z0 = 4 nm and z0 = 8 nm, are considered.
For each, sharpness parameter h is set to h = 20 nm and the distance between neighboring
asperities is taken as λ = 100 nm. In all cases the inclination of the spatula shaft is kept fixed
at θy = 45◦ and the net force acting on the end face is taken as zero. The figure shows that,
even for z0 = 8 nm, most of the pad is still fully adhering to the rough substrate. The contact
surface is the area enclosed by the peeling zone, which appears as a red band in the stress plot.
This means that the spatula is sufficiently compliant to adapt to the substrate roughness, which
is quite remarkable. The stresses caused by the pad deformation exceed by far the stress level
of the pull-off computations seen in the previous sections. This indicates that the spatula stress
is determined predominantly by the roughness of the substrate. The surface roughness also
has a strong influence on the numerical computations. During peeling of the pad, the peeling
zone advances across the asperities, which can cause local instabilities in the system. Advanced
contact algorithms need to be developed to handle such instabilities.

5 Conclusion

This paper presents a detailed three dimensional, parametric geometry model for a gecko spatula
and uses this model to study the peeling behavior of the spatula for various model parameters
and loading conditions. The mechanical formulation is based on the 3D, finite element based,
computational adhesion formulation of Sauer and Wriggers (2009), which is outlined in Sec. 3.
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Figure 13: Rough surface model based on eq. (28) considering a periodic triangular grid of
asperities with distance λ.

z0 = 0 z0 = 4 nm z0 = 8 nm

Figure 14: Spatula adhesion to a rough surface for various asperity heights z0. The top row
shows the side view of the pad and the rough substrate. The bottom row shows the bottom
view of the pad. The area enclosed by the peeling front is fully in contact. The truncated
colorscale shows I1/E, which lies between -0.415 and 0.294.

Among the different cases that are studied here, are the influences of variations in spatula size,
spatula stiffness, strength of adhesion, range of adhesion, surface roughness, stiction and loading
conditions.

The proposed spatula model offers several advantages over previously considered spatula models.
The first is that the geometry description is parameterized, which allows to easily consider size
and shape changes, and conduct geometry optimization studies. Here, the effect of different
spatula sizes has been investigated. A study of different shapes will be considered in the future.
A second advantage of the proposed spatula model is the detailed 3D analysis it allows. The
stress and strain fields can be analyzed and large stress concentrations can then be used to
define criteria for shape optimization and material failure. A third advantage is the possibility
to study the contact on rough substrate surfaces and to determine its influence on the effective
spatula performance.

Even though the gecko spatula is very small – the pad is only about 10 nanometers thick – it
is still so large that a very high number of finite elements is required in order to model van der
Waals adhesion between the spatula pad and a substrate robustly. A highly efficient contact
enrichment technique has been developed for this purpose in Sauer (2011a). This technique is
used here since it allows the use of a moderately coarse finite element discretization, where the
contact surface elements are no smaller that 2.87 nm in diameter.

The numerical studies conducted here, allow us to draw several conclusions: First of all, the
pull-off forces obtained from the proposed model fall into the experimental range reported in
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the literature. Secondly, the study shows that the gecko spatula can function over a wide range
of model parameters. In the extreme cases the spatula either loses its adhesive property or it
will exhibit very large stresses. Finally, the rough surface computations show that the spatula
adhesion is so strong that there can be intimate contact between spatula pad and substrate even
for very rough surfaces. The effect of rough surfaces is a topic that needs to be investigated
in further detail in the future. Another important extension is the consideration of tangential
loading components. Since these can cause very large tangential contact forces, the formula-
tion of accurate sticking and sliding friction models for adhesive contact is necessary. There
are also several other future applications that can be studied with the present model. One
is the development of multiscale models that describe entire gecko setae. In this regard it is
also helpful to develop reduced order models, that capture the effective spatula behavior. The
present model can then be used as a reference model. Another future application are shape
optimization studies. For these purposes it is also useful to refine the model, for example by
considering inertia, friction or by considering dissipative material response.
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A Detailed description of the modeled spatula geometry

This section describes the four parts used to model the gecko spatula. For illustration, the reader
is referred to Figs. 2 and 3. The interface surfaces between the four parts are perpendicular to
the {X,Y }-plane (i.e. the surface normals of all interfaces are parallel to the {X,Y }-plane).
The parts can therefore be uniquely defined in the {X,Y }-representation shown in Fig. 2.

Part PI consists of the shaft and the outer rim of the pad. It is formed by a curved cylin-
der whose axis follows the curve through points {P1, P2, ..., P7}. The cylinder has an elliptical
cross-section. The first half width of the ellipse is aligned with the Z-axis and is denoted a,
the second half width is aligned with the {X,Y }-plane and is denoted b. Between points P1

and P2, the two half widths a and b vary linearly between cs and as, and between cs and bs.
Between point P2 and point P7, the half width a is equal to the Z coordinate of the dashed
curve between P2 and P7, which is described by a circle in the {X,Z}-plane with radius r5 and
center at P15. Half width b is set equal to a for the stretch between P3 and P7. From P2 to P3,
b varies linearly between bs and a(P3). The elliptical cross-section of PI is oriented such that
a is parallel to the Z-axis while b, at P1 and along {P3, ..., P7}, is parallel to the {X,Y }-plane
and perpendicular to the cylinder axis. At P2, the axis has a kink and the half axis b is aligned
with the bisector of the kink angle. Along the axis between points P1 and P3 the direction of
the half width is found by the linear interpolation of the directions at P1, P2 and P3. Between
points P1 and P2, the shaft is inclined by θs.
Part PII is the region enclosed by the curve through points {P12, P3, P4, ..., P12}. The Z-height
of PII is equal to the Z-height of PI along their common interface surface (though points
{P3, P4, ..., P7}) and reduces down to the pad thickness hp at the inner boundary (through
points {P8, P9, ..., P11}). In the region {P12, P4, ..., P12} the height is varied using a cosine func-
tion such that the slope of the top surface across the interface {P12, P4, ..., P12} is continuous.
Along {P4, ..., P12} this slope is horizontal (i.e. parallel to the {X,Y }-plane). Along {P12, P4}
the slope is not horizontal as it is adapted to the slope of the top height of the rim, which
follows from parameters r5 (defining line P3 to P4) and a. The top surface of the corner region

20



{P3, P4, P12, P3} is also equal to the top height of the rim. This produces a smooth transition
at the junction of regions PI, PII and PIII.
Part PIII is formed by the triangular prism bounded by the interface through points {P2, P3, P12}.
The Z-height is equal to 2a.
Part PIV has constant Z-height hp and is bounded by the interface through points {P8,P9,P10,
P11,P8}.
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