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I have known Peter Wriggers since summer 2005 when he came to visit Berke-
ley and we discussed my doctoral research on computational nanoscale contact me-
chanics (Sauer, 2006). After graduation I took the opportunity to work with him
at the Leibniz University Hannover. There I had the chance to teach the gradu-
ate courses ‘continuum mechanics’ and ‘contact mechanics’, coordinate various re-
search projects, and, perhaps most challenging, get familiar with the German aca-
demic system. Since January 2010 I work at the Graduate School AICES in Aachen.
I wish Peter Wriggers all the best for the future.

Abstract This paper outlines the differences between nanoscale and macroscale
contact descriptions and gives an overview of the challenges encountered at the
nanoscale. The adhesive instability, common to nanoscale contact, is illustrated by
a simple example. Further emphasis is placed on multiscale approaches for contact.

1 Introduction

Nanoscale contact mechanisms are essential for many applications, like adhesives,
small scale surface characterization and machining, MEMS and NEMS (Micro- and
Nano-electro-mechanical systems), self-cleaning surfaces, gecko adhesion, cohe-
sive fracture and peeling problems. At this scale it becomes necessary to integrate
the fundamental physical phenomena (Israelachvili, 1991; Persson, 2000) into the
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approaches of computational contact mechanics (Laursen, 2002; Wriggers, 2006).
The challenges encountered in this are discussed in the following sections.

2 Nanoscale contact challenges

At small length scales several physical and numerical challenges present themselves
that need to be accounted for in a computational framework. These challenges are:

1. Computational contact mechanics: numerical accuracy, efficiency and stability,
closest point projection onto discrete surfaces, friction algorithms, wear and lu-
brication modeling

2. Bridging the scales between atomistic and continuum description (see Sec. 3)
3. Efficient and accurate algorithms for nanoscale contact (see Sec. 3)
4. Complex surface microstructure at different length scales (see Fig. 1)
5. Physical instabilities caused by strong adhesion (see Sec. 4)
6. Peeling computations: numerical instabilities due to discretization error
7. Multiscale modeling and homogenization approaches (see Sec. 5)
8. Nanoscale contact dynamics: efficient and accurate integration algorithms
9. Interaction between nanoscale friction and adhesion

10. Multifield contact problems, e.g. thermal equilibrium and chemical reactions at
nanoscale interfaces

11. Nanoscale material models for specific applications: soft adhesives, liquids, gran-
ular media

12. Parameter identification and determination

Substantial work has been done to address the first challenge (Laursen, 2002; Wrig-
gers, 2006). The challenges posed by complex microstructures are illustrated by
the examples in Fig. 1. An efficient formulation for stable peeling computations is
presented in Sauer (2011). Challenges 2, 3, 5 and 7 are addressed in the follow-
ing sections. Challenges 8–12 are mostly open research topics that call for further
theoretical, experimental and computational research. Contact models that success-
fully describe various contact aspects need to be integrated into holistic top-down
and bottom-up approaches. Such approaches attempt to find a unified description of
various phenomena across different length scales and thus try to link macroscopic
and microscopic model parameters. A helpful modeling framework for this is the
bottom-up contact model outlined in the following section.

3 Nanoscale versus macroscale contact

In this section the different descriptions commonly used for nanoscale and macro-
scale contact are contrasted. Considering conservative systems in both cases, the
total potential energy can be written as
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Fig. 1 a. Surface microstructure of the self-cleaning lotus leaf, adapted with permission from Eye
of Science; b. Microstructure of the gecko adhesion mechanism (Autumn et al., 2006), adapted
with permission from the Journal of Experimental Biology

Π = Πint +Πc−Πext , (1)

where the individual contributions Πint, Πext and Πc denote the internal, external
and contact energy. For macroscopic scales, contact between continua B1 and B2
is characterized by the the impenetrability constraint

g(x1,x2)≥ 0 ∀ x1 ∈ ∂B2, x1 ∈ ∂B2 , (2)

which states that the gap g between arbitrary surface points must remain positive.
The impenetrability causes the tractions tc acting on the contact surface between the
bodies (see Fig. 2). Utilizing the gap vector g, the contact energy can be expressed
as

Πc =
∫

∂Bc
tc ·g dA . (3)
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a. b.

Fig. 2 Nanoscale (a.) versus macroscale (b.) contact description

On the other hand, at the nanometer scale and below, contact is resolved into the
interactions of individual atomic particles (see Fig. 2). The interaction across the
contact interface can be described by pair potentials like the Lennard-Jones potential

φ(r) := ε

( r0

r

)12
−2ε

( r0

r

)6
, (4)

which, for example, is suitable to describe van-der-Waals adhesion between the bod-
ies. Here r is the distance between the two particles, and r0 and ε are material con-
stants characterizing the interaction. Given the pair potential φ , the contact energy
of the discrete particle system follows from the sum

Πc =
n1

∑
i

n2

∑
j

φ(xi−x j) , (5)

which is taken over all interacting particles of the two bodies.
A seamless transition between both approaches can be generated if the discrete

sum in eq (5) is replaced by the continuous integral (Sauer and Li, 2007b)

Πc =
∫

B1

∫
B2

β1 β2 φ(x1−x2)dv2 dv1 , (6)

where β1 and β2 denote the molecular densities of the bodies. According to this
formulation the contact forces between the bodies follow as gradients of potential
φ . This approach yields accurate results down to length scales of a few nanometers
(Sauer and Li, 2008; Sauer and Wriggers, 2009). At large scales this formulation re-
sembles phenomenological constitutive adhesion and cohesion models (Raous et al.,
1999; Xu and Needleman, 1994) that are enforced computationally by barrier or
cross-constrained methods (Wriggers, 2006; Zavarise et al., 1998). This transition,
as well as further computational details and efficient contact algorithms, are dis-
cussed in Sauer and Li (2007b, 2008); Sauer and Wriggers (2009); Sauer (2011).
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4 Adhesion Instability

During strong adhesion of soft bodies an instability can occur: The adhesive forces
can become so strong that they overpower the internal forces of the solids. This
phenomenon can be illustrated by the simple 1D example shown in Fig. 3.a (Sauer,
2006): Two particles are considered that interact with the Lennard-Jones potential
(4). The internal deformation of the solids is modeled by a spring with constant
stiffness k. The lower particle is considered fixed, while the upper particle is pushed

a. b.

Fig. 3 a. Adhesive contact example; b. Load-displacement curve.

downward by an imposed displacement u that requires the force P. For r = r0 and
u = 0, the force in the system is P = 0. The total potential energy of this system is
then given by

Π(r) = φ(r)+
1
2

k
(
u+(r− r0)

)2
. (7)

For a fixed displacement u, equilibrium follows from ∂Π

∂ r = 0
∣∣
u=fixed, from which

we can find a relation between r and u, namely

u(r) =
F(r)

k
− r + r0 , (8)

where F(r) := − ∂φ

∂ r is the interaction force of the Lennard-Jones potential. From
eq. (8) the load-displacement curve follows as

P(u) = k
(
u+ r(u)− r0

)
. (9)

It can be displayed as P(r) vs. u(r) as is shown in figure 3.b. This graph shows that,
as u becomes large, the repulsion between the particles is so strong that the defor-
mation is determined purely by the deformation of the spring. For large negative u,
on the other hand, the attraction between the particles is very weak so that P→ 0
and u→ r0− r, since the spring is barely deforming.
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The stability of the system can be investigated by examining ∂ 2Π

∂ r2 |u=fixed. Setting
this derivative equal to zero, we can identify the critical spring stiffness

kcr = 36
( 4

13

)4/3 ε

r2
0

. (10)

For k > kcr the system will always be stable. However, if k < kcr the system develops
an instability. The unstable section of the equilibrium path is shown as a dashed line
in the figure above. In this case, as we push the two particles together their mutual
attraction will suddenly overpower the spring and the particles snap together into
a new equilibrium position. Likewise, when pulling the particles apart, they will
suddenly snap free. This behavior carries over to continuous systems (Crisfield and
Alfano, 2002; Sauer and Li, 2007a).

5 Multiscale contact modeling

Even though computational power has increased immensely in the past, it remains
impossible to resolve even micrometer-scale problems at full atomic resolution.
Therefore multiscale methods are needed that combine different modeling levels
into one holistic model. To find appropriate multiscale models one must decide
which details and effects to include at the various levels. To a large degree this
presumes the knowledge of the characteristics that are emphasized and the charac-
teristics that are lost between the scales and it thus become necessary to validate and
refine chosen models. The demand for multiscale modeling lies both in the develop-
ment of theoretical formulations, that unify different descriptions at various length
scales, and in the development of efficient computational formulations, that achieve
to span a large range of length scales. Helpful modeling components are coarse-
graining techniques, reduced order modeling, adaptive model refinement and FE2

strategies.
The selection of an appropriate multiscale approach for contact depends on the

specific problem at hand. An example is the adhesion mechanism of the gecko
shown in Fig. 4. To model the adhesion mechanism of the gecko toes, five modeling
levels are considered: A directional lamella model, at the millimeter scale, a seta
model at the 10 µm scale, a spatula model at the 100 nm scale, an effective contact
model at the nanometer scale, and a molecular interaction model at the Ångstrom
scale. Advances in this direction have appeared in Sauer (2009, 2010).

6 Conclusion

This paper discusses some of the challenges encountered in nanoscale contact me-
chanics. Some of these have been addressed and partly resolved satisfactory by re-
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Fig. 4 Multiscale modeling hierarchy of the adhesion mechanism used by the gecko

cent research activity. Other challenges are still open topics that call for further
theoretical, experimental and computational research. Among those are multiscale
methods, time integration algorithms, nanoscale friction modeling, multifield meth-
ods and nanoscale material modeling.
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