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Abstract

A three-dimensional multiscale model is presented which describes the adhesion and deformation
of a gecko seta. The multiscale approach combines three models at different length scales: At
the top level, on the order of several micrometers, a nonlinear finite element beam model is
chosen to capture the branched microstructure of the gecko seta. At the intermediate level, on
the order of several nanometers, a second finite element model is used to capture the detailed
behaviour of the seta tips, the so-called spatulae. At the lowest level, on the order of a few
Ångstroms, a molecular interaction potential is used to describe the van der Waals adhesion
forces between spatulae and substrate. Coarse-graining techiques are used to bridge the scale
between the model levels. To illustrate and validate the proposed gecko seta model, numerical
pull-off simulations are shown and compared to experimental data from the literature.

Keywords: computational contact mechanics, interatomic potential, gecko adhesion, geomet-
rically exact beam theory, multiscale modelling, nonlinear finite element methods

1 Introduction

Several lizards, like the tokay gecko, have the remarkable ability to adhere to vertical and over-
hanging surfaces. The strong adhesion is controlled by the particular surface microstructure
of the gecko toes: The toes are coated by hundred thousands of fine hairs, the so called setae.
These branch into hundreds of nanometer-fine tips, the so called spatulae, which connect to
the substrate and support the tensile forces between toe and substrate during adhesion. The
works of Autumn et al. (2006b), Rizzo et al. (2006) and Tian et al. (2006) provide detailed
images of the seta and spatula geometry. Based on these images, this paper presents a detailed,
computational multiscale model which describes and studies the mechanical behaviour of the
gecko seta during adhesion.
The first direct measurements of the adhesive force of a single gecko seta were reported by
Autumn et al. (2000) and Autumn and Peattie (2002). In their studies the authors found that
gecko adhesion is caused by molecular van der Waals forces (Autumn et al., 2002). The au-
thors argue that a van der Waals mechanism implies that the adhesive properties are mainly
the effect of the seta geometry and are not the effect of the surface chemistry, which explains
why the gecko adhesion works well on different surfaces and why gecko setae have a particular
microstructure. On the other hand, Sun et al. (2005) argue that their spatula measurements
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demonstrate that gecko adhesion is dominated by capillary forces. These findings are also
supported by the measurements of Huber et al. (2005), which show that humidity contributes
significantly to gecko adhesion on the nanoscale level. Due to the different observations, it is
reasonable to assume that both van der Waals and capillary forces are responsible for gecko
adhesion. In this paper the focus is placed on van der Waals adhesion and it is shown that these
are capable of generating the forces observed in measurements. The consideration of capillary
forces is left for future work.
Several theoretical and numerical seta models have been proposed and studied in the litera-
ture. The work of Gao et al. (2005) and Yao and Gao (2006) focuses on the mechanics of the
hierarchical adhesion structure of geckos. The authors use a self-similar hierarchical seta model
to show that the hierarchical structure plays a key role in robust adhesion. They also perform
a 2D finite element calculation to show that the adhesion strength of the seta depends on the
direction of loading, which results in an orientation-controlled switch between attachment and
detachment. Hansen and Autumn (2005) demonstrate that gecko setae are self-cleaning adhe-
sives and suggest that the self-cleaning property is intrinsic to the seta nanostructure. Majidi
et al. (2005) investigate the adhesion of a slender, cylindrical fiber which is bend over and
maintains side contact with an opposing substrate. The fibers are considered linear elastic with
constant cross-section. Autumn et al. (2006b) examine the flexibility of a gecko seta array and
show that the effective elastic modulus of the microstructured array is significantly smaller than
the elastic modulus of beta-keratin, the seta bulk material. The compliance of the gecko seta is
also analyzed by Takahashi et al. (2006) using an analytical model based on an elastic spring
and the Johnson-Kendall-Roberts (JKR) model for adhesive contact. Autumn et al. (2006a)
study the dependance between adhesion and friction and introduce a new frictional adhesion
model which provides an description of the seta behaviour during attachment and detachment.
Bhushan et al. (2006) and Kim and Bhushan (2007a) present a three-level model of a gecko seta
consisting of linear elastic springs. A numerical algorithm is used to simulate contact between
their seta modal and a rough surface. The authors show that the hierarchical structure produces
an adhesion enhancement. The research is further extended to study the influence of the spring
properties (Kim and Bhushan, 2007b) and to include capillary forces (Kim and Bhushan, 2008).
Tian et al. (2006) use an analytical tape model based on van der Waals interaction to study the
rapid switching between gecko foot attachment and detachment. The adhesion mechanism used
by the gecko has also inspired many researchers to develop and fabricate synthetic adhesives,
e.g. see Campolo et al. (2003), Sitti and Fearing (2003), Shah and Sitti (2004), Yurdumakan
et al. (2005), Kim et al. (2007), Aksak et al. (2007), Berengueres et al. (2007), Ge et al. (2007)
and Qu et al. (2008).
The mechanical studies reported in the literature so far are based on analytical models that
consider a simplified seta geometry and assume a linear deformation behaviour. The results of
such modelling approaches are useful to help explain observed mechanisms and draw general
conclusions, but they offer little insight into the details of seta and spatula adhesion, and are
not accurate enough to provide reliable predictions. Therefore the need exists to develop more
detailed seta models. More detailed models are also needed to explain an aparent discrepancy in
the experimental results reported in the literature. According to several authors the measured
pull-off load of a single seta is much larger than the pull-off load of the spatula would suggest
(see sections 5 and 6).
This work presents a detailed mechanical seta model that captures the complex seta geometry
and the nonlinear kinematics during large deformations. A 3D multiscale framework is used
that combines three different models: an overall seta model, a spatula submodel and a molecular
interaction submodel. The model is implemented within a nonlinear finite element framework,
which is used to simulate the pull-off behaviour of the gecko seta. The model is efficient and
suitable to replace costly and time consuming experiments by economic and fast simulations.
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The proposed model aims to advance the understanding of the mechanics of strong attachment,
easy detachment, rough surface adaption and self-cleaning of gecko setae. Due to its general
approach the model allows for a detailed study of the influence of seta geometry and material
parameters. The seta model presented here is a major advancement of the preliminary 2D
results presented in Sauer (2008a,b).
The remainder of this paper is structured as follows: Section 2 presents the proposed multiscale
seta model and illustrates the chosen geometrical model description. The continuum contact
formulation used to describe van der Waals adhesion is derived in section 3 and a finite element
implementation of the model is described in section 4. The pull-off behaviour of the spatula
and seta is then examined in sections 5 and 6. The paper concludes with section 7.

2 A multiscale seta model

This section discusses the modelling of the gecko seta. The need for a multiscale approach is
explained and the set of model parameters necessary to describe the geometry, material and
adhesion of the seta are listed.

2.1 Model outline

The gecko uses molecular interaction forces like van der Waals attraction and capillary forces
to adhere to almost any surface. While the molecular interaction forces vary on the order of
Ångstroms, the gecko itself is on the order of many centimeters. Thus the adhesion mechanism
employed by the gecko is a truly multiscale phenomenon. In order to access the molecular
interaction forces the gecko has developed a complex hierarchical microstructure. The gecko
toes are coated with hundred thousands of micrometer-fine hairs, the so called setae. Each seta
branches into hundreds of nanometer-fine tips, the so called spatulae. The microstructure of the
gecko toe is shown in figure 1, which is adapted from Autumn et al. (2006a). Enlargements A,
B and D show the branched structure of a single seta, the spatulae and an array of many setae.
The length of the white scale bars in frame A, B and D is 5µm, 1µm and 50µm respectively.
In this work we are interested in describing and studying the detailed mechanical behaviour of
an adhering gecko seta. Since the seta adhesion is governed by molecular interactions the mod-
elling must bridge the span between molecular and seta scale. Therefore a three-level multiscale
approach is chosen consisting of a molecular submodel, a spatula submodel and an overall seta
model, as is illustrated in figure 2: The overall seta model, considered at the largest scale, is
used to describe the overall mechanical behaviour of the seta structure. As shown in the figure,
the seta consists of a thick shaft branching into many fine tips. The enlargement of the seta
tips takes us to the spatula submodel, which is used to describe the mechanical behaviour of an
adhering spatula. As shown, the spatula consists of a long cylindrical shaft with a flat, thin pad
attached to its end, which is the part that can adhere to the underlying substrate. Due to the
flexibility of the spatula the adhesion can cause large deformations which must be captured by
the model. The adhesion between spatula pad and substrate is governed by molecular interac-
tion forces. The forces occurring at the molecular scale are captured by the molecular submodel.
As indicated, the scale of the model spans the length scales between 0.1 nm and 100µm, which
is a range of 6 orders of magnitude. The detailed description of the seta and spatula models
are discussed in section 2.2 and 2.3; the incorporation of the molecular interaction into the
modelling is discussed in section 3.
Compared to their length, the seta and spatula are relatively thin structures which can be de-
scribed by beam theory. Due to the large deformations occurring during adhesion, the nonlinear
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Figure 1: Microstructure of the gecko toes (Autumn et al., 2006a), adapted with permission
from the Journal of Experimental Biology

Figure 2: Multiscale model of a single gecko seta

kinematics during deformation must be considered and one cannot use linear beam theory. To
simulate the mechanical behaviour of seta and spatula, nonlinear finite beam elements are used
as is discussed in section 4. Numerical simulations of the pull-off behaviour of an adhering
spatula and seta are reported in section 5 and 6.

2.2 Seta geometry

The description of the seta geometry is based on the images and measurements of Autumn
et al. (2006a) (see figure 1) and Tian et al. (2006). While it is fairly straightforward to find
global parameters like the seta length, it becomes extremely difficult to characterize the entire
3D branching seta structure in detail, especially since even small handling forces will deform
the structure significantly. Furthermore the seta geometry is subject to statistical variation and
no nanometer-precise measurements have been reported up to now. Hence, the modelling con-
sidered here can only be an idealization of the detailed 3D seta topology that aims at capturing
the overall seta geometry and branching behaviour by using a minimum set of parameters.

4



Figure 3: Three-dimensional gecko seta model

The 3D seta model chosen here, which is described in the remainder of this section, is illus-
trated in figure 3. The straight line segments depict the nonlinear beams that are used to model
the branched seta structure. Not shown, but implied, is a varying cross section of the beams
to account for the thickness change of the seta branches as is shown in figure 1. For further
illustration, figure 4 shows the side, front and top view of our seta model. Here only the blue
lines represent the seta structure, whereas the red lines are auxiliary lines used to illustrate the
model construction. The basic model parameters are given by the seta height H0, the seta base
width D0 and the seta inclination angle αse. The red auxiliary lines, i.e. four hyperbolas and a
set of horizontal lines, are introduced to describe the 3D branching of the seta structure. The
two hyperbolas shown in the side view (figure 4.a) are both described by the equation

X2

C2
1

− Z2

C2
2

= 1 , X,Z > 0 . (1)

To generate the two hyperbolas we have chosen C1 = 0.5D0 and C1 = 1.5D0, each with
C2 = C1 tan αse, since these approximate the overall seta shape well. Two further hyperbolas
are used to model the seta branching viewed from the front (figure 4.b). They are described by
the equation

Z

C4

=
C3

|Y | − 1 , Z > 0 , (2)

where we have chosen C3 = 0.5D0 and C4 = 0.4D0. The four horizontal red lines (at Z = Hi,
i = 1, ..., 4) describe the levels where the seta branches. At each level the branch coming from
above splits into four new branches. The branching points (i.e. the intersection of the seta struc-
ture with the red lines) is constructed in the following way: At height Hi the interval between
the two bounding hyperbolas is divided into 2i−1 equidistant intervals. The seta branching
points are then taken as the midpoint of these intervals. The branch segments between two
branching points are considered straight. The heights of the five levels are computed based on
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Figure 4: Geometry of the seta model: a. Side view, b. Front view, c. Top view

level i number of branches height Hi branch diameter 2Ri

0 40 = 1 H0 R0 = γ4Rsp = Rsh

1 41 = 4 H1 = η3Hsp R1 = γ3Rsp

2 42 = 16 H2 = η2Hsp R2 = γ2Rsp

3 43 = 64 H3 = η Hsp R3 = γ Rsp

4 44 = 256 H4 = Hsp R4 = Rsp

Table 1: Seta branch characteristics

two parameters, Hsp and η, as shown in table 1. Hsp is the height of the spatula as defined
in section 2.3 below (see figure 5). The table shows also how the diameter of the branches is
chosen on each level, based on two parameters: the diameter of the seta shaft, 2Rsh, and the
diameter of the spatula, 2Rsp. It is assumed that from level to level the diameter decreases by
a constant factor γ. The seta parameters selected here are given in table 2.

2.3 Spatula geometry

The description of the spatula geometry considered here is shown in figure 5 and is based
on the detailed images and measurements of Rizzo et al. (2006) and Tian et al. (2006). The
basic parameters are given by the total spatula length Lsp, the spatula pad length Lp, the
spatula inclination angle αsp, which is defined as the angle between the spatula axis and the
substrate surface as shown in figure 5.a, and the height of the adhering spatula, Hsp, as defined
in figure 5.a. (Due to the spatula deformation, Hsp is significantly less than the original spatula
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height given by Lsp sin αsp.) The spatula width w changes along the spatula length, as is shown
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Figure 5: Spatula geometry: a. Inclination, b. Width, c. Cross section area

in figure 5.b. The function w(S) is characterized by the maximum pad width wp and the shaft
diameters ws1 and ws2, which are measured at the positions S = rp, S = Lp and S = Lsp. The
function w(S) is smoothed by a circle of radius rp at the tip, but varies linearly otherwise. The
average spatula shaft diameter is given by 2Rsp := (ws1 + ws2)/2. The pad height, designated
by h, is considered constant along Lp. The cross section of the spatula pad is assumed to be
rectangular; the cross section of the spatula shaft is assumed to be circular. The spatula cross
section area A is thus given by

A(S) =







hw(S) S < Lp ,

π

4
w(S)2 S > Lp ,

(3)

and is shown in figure 5.c. To avoid a jump in A(S) at the connection between pad and shaft,
a linear transition is inserted for A(S) in the range of 250 nm < S < 400 nm (dashed line in
figure 5.c). The second moment of area of the spatula cross section, I(S), is obtained in the
same manner. The spatula model parameters selected here are given in table 2.

2.4 Chosen parameters

Table 2 below lists the parameter values chosen to model the gecko seta and spatula geometry.
The values are selected based on the data and images of Autumn et al. (2006a), Rizzo et al.
(2006) and Tian et al. (2006). The parameter η, which describes the length between branching
points, is chosen such that the length of the seta shaft becomes Lsh = 64.84µm, agreeing with
the image in figure 1. For the given parameters, the overall seta length, taken as the greatest
extend of the structure shown in figure 4, is equal to Lse = 93.26µm. The spatula height Hsp

depends on the deformation of the spatula during adhesion. The spatula deformation is studied
in section 5, where we have found Hsp = 670µm for the considered spatula parameters (see
figure 7).
Additional parameters are required to model the behaviour of beta-keratin, which is the material
of both seta and spatula. The material response is assumed to be linear elastic isotropic, so that
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seta parameters spatula parameters

H0 = 49.14µm Lsp = 1000nm
D0 = 13.50µm Lp = 300nm
αse = 30◦ αsp = 60◦

Rsh = 2.00µm h = 10nm
Rsp = 50nm wp = 250nm
η = 2.417 ws1 = 90nm, ws2 = 120nm

γ = 4
√

40 rp = 50nm

Table 2: Chosen geometry parameters for the seta and spatula

only two material parameters are needed: Young’s modulus E and Poisson’s ratio ν. According
to Tian et al. (2006) the Young’s modulus of beta-keratin is given by E = 2GPa. Poisson’s
ratio is taken as ν = 0.2 (see table 3). To assess the influence of statistical variations of the seta
and spatula properties, it is useful to consider a parameter study of the proposed model. Such
a study is outside the scope of this work but will be considered in the future.

3 Continuum contact formulation

In this section the contact formulation within the general continuum mechanical framework of
large deformations is derived. The formulation is based on the contact model introduced by
Sauer and Li (2007c,a). The aim is to provide an effective continuum formulation that describes
the overall behaviour like adhesion and contact due to the molecular interactions between spat-
ula pad and substrate as is shown in figure 2. Van der Waals attraction is considered, which
has been identified as a major source of gecko adhesion (Autumn et al., 2002). The van der
Waals interaction between two molecules can be modelled by the Lennard-Jones potential

φ(r) := ε
(r0

r

)12

− 2ε
(r0

r

)6

, (4)

where r denotes the distance of the interacting molecules and where r0 and ε are material
constants denoting the equilibrium spacing and bond energy of the molecular interaction. The
corresponding force between the particles results from changes of the distance r, i.e. F (r) =
−∂φ

∂r
. A negative force indicates attraction (e.g. during adhesion of the bodies) while a positive

F indicates repulsion (e.g. during contact of the bodies). Even though these interaction forces
may be very small, they can amount to large forces, when the interaction of millions of molecules
is considered as is the case for the interaction between spatula pad and substrate. To determine
the resulting forces between two neighboring bodies we have to sum up the individual molecular
forces. In the continuum limit the summation becomes an integration. Therefore, let us denote
the two continua by B1 and B2 and consider two points x1 ∈ B1 and x2 ∈ B2 which are separated
by the distance r := |x1 − x2|. The bodies are considered deformable and we thus distinguish
between an undeformed reference configuration and a deformed current configuration. We
denote the current molecular density at point xk (k = 1, 2), expressed in number of particles
per current volume, by βk. Analogously the molecular density in the reference configuration
is expressed as number of particles per reference volume and is denoted by β0k. The relation
between the two densities is given by

β0k = Jkβk , Jk = detF k , k = 1, 2 , (5)
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where F k is the deformation gradient at xk ∈ Bk. Integrating the Lennard-Jones force over B1

and B2 we obtain the forces

b1(x1) :=

∫

B2

β2 F (r) r̄1 dv2 , b2(x2) :=

∫

B1

β1 F (r) r̄2 dv1 , (6)

where r̄1 := (x1−x2)/r and r̄2 := (x2−x1)/r are the direction vectors between x1 and x2. It is
noted that the Lennard-Jones potential decays rapidly, so that the contribution to the integral
comes mainly from a small subvolume located at the neighboring surfaces of B1 and B2. This
fact can be exploited in numerical integration schemes (Sauer and Li, 2008). In particular, if
the neighboring bodies are sufficiently flat at the atomic scale, the integration over Bk needed
for eqn. (6) can be replaced by the analytical integration over a flat half-space (Sauer and Li,
2007a), yielding

bk = πβ`εr
2
0

[

1

5

( r0

dk

)10

−
( r0

dk

)4
]

n` , (7)

where dk denotes the distance between point xk ∈ Bk and surface ∂B` of the neighboring body
B`, and where n` describes the outward unit normal of the surface ∂B`. Here B` denotes the
neighbor of body Bk (i.e. k = 1, ` = 2 or k = 2, ` = 1). Eqn. (7) shows that the force bk is a
function of the distance and orientation of the neighboring surface, i.e. bk = bk(dk,n`). Some
of the constants appearing in eqn. (7) can be replaced by introducing Hamaker’s constant which
is given as AH = 2π2β01β02εr

6
0 (Israelachvili, 1991). From eqn. (7) thus follows

β0kbk =
AH

2πr4
0J`

[

1

5

( r0

dk

)10

−
( r0

dk

)4
]

n` . (8)

A typical value for Hamaker’s constant is AH ≈ 10−19J (Israelachvili, 1991). A typical value
for the molecular equilibrium spacing is r0 ≈ 0.4 nm. These values complete the set of material
parameters of our model (see table 3).

elasticity parameters interaction parameters

E = 2GPa AH = 10−19J
ν = 0.2 r0 = 0.4 nm

Table 3: Chosen material parameters for both seta and spatula

The measure β0kbk denotes the body force acting at xk ∈ Bk, due to the interaction of the two
bodies. It is expressed as force per unit reference volume. The measure βkbk, on the other hand,
denotes the body force expressed as force per unit current volume. Under certain conditions the
body forces can be projected onto the surface and written as effective surface tractions (Sauer
and Li, 2007a, 2008). This is advantageous in numerical simulations. Further note that if one
surface, say ∂B2, is planar then its outward normal n2 is constant.
The mechanical behaviour of the two interacting bodies B1 and B2 follows from the solution of
the two equilibrium equations

div σk + βk bk = 0 , k = 1, 2 , (9)

where σk denotes the Cauchy stress tensor inside body Bk. Here, and in the following sim-
ulations, we are only considering the quasi-static case. The extension to dynamics will be
considered in later research. The corresponding weak form to eqn. (9) is given by (Sauer and
Li, 2007a,b)

2
∑

k=1

[
∫

Bk

grad(δϕk) : σk dvk −
∫

Bk

δϕk · βk bk dvk

]

= 0 ∀ δϕk , (10)
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where δϕk denotes the kinematically admissible virtual deformation of body Bk. Due to the
strong nonlinearities appearing from adhesion law (8) and from the kinematics of large defor-
mations, eqn. (10) can only be solved numerically. The following section discusses the finite
element implementation of the seta and spatula models based on weak form (10).

4 Finite element implementation

The finite element method is used to solve eqn. (10) approximately. Geometrically exact, three-
dimensional beam elements according to Simo (1985) and Simo and Vu-Quoc (1986) are used
for both seta and spatula. Such a nonlinear finite element formulation is needed to capture the
kinematics of large deformations accurately.
In the following we associate the seta structure (including the spatula) with body B1 and let
the substrate, with which the seta is interacting, be body B2. The substrate is considered rigid
(i.e. J2 = 1) and we are only interested to compute the deformation and forces inside the seta
(or spatula respectively). Hence the summation in eqn. (10) is disregarded to give

∫

B1

grad(δϕ1) : σ1 dv1 −
∫

B1

δϕ1 · β1 b1 dv1 = 0 , ∀ δϕ1 . (11)

The first contribution denotes the internal virtual work due to the deformation of the seta, while
the second denotes the virtual work due to the seta-substrate interaction governed by eqn. (8).
In the following, we will focus on the second part. The treatment of the first is given in detail
in Simo (1985) and Simo and Vu-Quoc (1986).
To facilitate the integration in eqn. (11) the seta domain B1 is broken into many finite elements
Ωe, each containing ne nodes. Using standard finite element notation (e.g. Belytschko et al.
(2000); Wriggers (2008)) the displacement field u and the variations δϕ are approximated within
each element by the interpolation

u ≈ Neu
e , δϕ ≈ Nev

e , (12)

where ue and ve denote the actual and virtual displacements of the ne nodes of element Ωe,
each with size (3ne × 1), and where

Ne =
[

N1 I , N2 I , ... , Nne
I

]

(13)

is the (3 × 3ne) matrix formed by the ne shape functions NI (I = 1, 2, ..., ne) of element Ωe.
With the help of eqn. (12) the virtual work of interaction for each element can be written as

−
∫

Ωe

δϕ1 · β1 b1 dv1 = vT
e f e

c , (14)

where the (3ne × 1) vector

f e
c := −

∫

Ωe

NT
e β1b1 dv1 = −

∫

Ωe

0

NT
e β01b1 dV1 , (15)

denotes the force vector acting on Ωe due to the contact-interaction. Due to the identity
β1 dv1 = β01 dV1 the force vector can be obtained either by the integration over the reference
configuration of the element, Ωe

0, or by the integration over the current configuration of the
element, Ωe.
It is noted that the formulation expressed by eqns. (11) to (15) is still general and valid for
any element type, like solid, shell or beam elements. In the following we focus on a beam
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element formulation, which is suitable to model the thin and elongated structure of the setae
and spatulae. In Sauer and Li (2007c,a) the formulation for solid elements is considered. For
beam elements in particular the nodal rotations need to be considered together with the nodal
displacements. These rotations, however, do not enter the expression of the contact force vector
f e
c considered here.

Figure 6 illustrates the integration procedure for eqn. (15). The sketches on the left and right

Figure 6: Integration of the contact forces over the spatula pad

show the deformed and the undeformed spatula (denoted by B1 and B01). S denotes the
coordinate running along the length of the undeformed configuration. The measures r1, rM and
r2 mark the distance between B2 and the bottom, the mid-plane and the top of the spatula at
position S. As in standard beam theory, no deformation along the beam thickness is considered
here. The angle α denotes the current spatula inclination at position S. This angle can vary
locally due to the spatula deformation, and it is not the same as the global spatula inclination
angle αsp introduced in figure 5. According to figure 6 the volume element dV1 can be written
as

dV1 =
w dr dS

cos α
, (16)

where w(S) is the width of the spatula as specified in figure 5. The boundaries of the spatula
pad are given by

r1 = rM − h

2
cos α , r2 = rM +

h

2
cos α . (17)

From eqn. (15) thus follows that

f e
c = −

∫ Le

0

NT
e T c

w(S) dS

cos α
, (18)

where Le denotes the reference length of beam element Ωe
0 used to discretize the spatula, and

where

T c :=

∫ r2

r1

β01b1(r) dr (19)

is the elemental line load acting on Ωe, which is expressed as force per reference surface. In
view of eqn. (8) this integration simply becomes

T c =
[

T (r1) − T (r2)
]

n2 (20)

with the function

T (d) :=
AH

2πr3
0

[

1

45

(r0

d

)9

− 1

3

(r0

d

)3
]

. (21)
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It is noted that the contact traction T c acting on Ωe is normal to the surface of B2. Hence, no
tangential contact forces are present, and the description cannot be used to model local friction.
The modelling of friction will be considered in future work.
For the iterative solution of eqn. (11) within the finite element method we further need to
provide the stiffness matrix appearing in the linearization of the force f e

c at the displacement
ue. The exact elemental stiffness matrix is defined by

ke
c :=

∂f e
c

∂ue
. (22)

In the following we report a simplified, approximate stiffness matrix that works very well in the
computations considered below. We suppose that the influence due to the elemental orientation,
represented by the cos α term, is small compared to the influence due to the elemental distance
dM. Keeping α fixed the approximate stiffness becomes

ke
ca :=

∂f e
c

∂ue

∣

∣

∣

∣

α

= −
∫ Le

0

NT
e

∂T c

∂ue

∣

∣

∣

∣

α

w(S) dS

cos α
. (23)

Using the chain rule we have

∂T c

∂ue

∣

∣

∣

∣

α

=
∂T c

∂u
· ∂u

∂ue

∣

∣

∣

∣

α

=
∂T c

∂u

∣

∣

∣

∣

α

Ne , (24)

according to eqn. (12). Hence the stiffness matrix conveniently becomes

ke
ca = −

∫ Le

0

NT
e

∂T c

∂u

∣

∣

∣

∣

α

Ne

w(S) dS

cos α
, (25)

where ∂T c

∂u
is a 3× 3 matrix that expresses the change of the elemental load T c at point x ∈ Ωe

due to the displacement change du at x. Due to the change du, the elemental distance rM

changes by drM = n2 · du so that we have

∂rM

∂u
= n2 . (26)

Employing chain rule once more we then find that

∂T c

∂u

∣

∣

∣

∣

α

=
∂T c

∂rM

⊗ ∂rM

∂u
=

∂T c

∂rM

⊗ n2 . (27)

In view of eqns. (20) and (17) we have

∂T c

∂rM

=
[

T ′(r1) − T ′(r2)
]

n2 , (28)

where T ′(d) = ∂T
∂d

follows readily from eqn. (21). Altogether we now obtain

∂T c

∂u

∣

∣

∣

α
=

[

T ′(r1) − T ′(r2)
]

n2 ⊗ n2 , (29)

which is a symmetric matrix, so that ke
ca also becomes symmetric. With equations (18), (20),

(21), (25) and (29) the finite element arrays capturing the contact-interacting based on expres-
sion (4) are fully specified. The elemental integrals (18) and (25) are evaluated numerically
using Gaussian quadrature. Since the force function T (d) (21) varies strongly, a fine finite ele-
ment mesh with sufficiently many quadrature points must be chosen. In the pull-off simulation
reported in the following section 300 elements, with two quadrature points each, are used to
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discretize the spatula pad. The approximate stiffness matrix works well during the iterative
solution procedure. This approximation does not affect the solution accuracy but rather the
rate of convergence, which is not quadratic if an approximate tangent is used. Quadratic con-
vergence is achieved with the exact stiffness matrix, which captures the influence of the cos α
term and which will be reported in a future publication.
Expressions (18) and (25) are used to describe adhesion and contact at the spatula level. At
the seta level the contact description is based on the behaviour of the spatula submodel. Let us
suppose that the load-displacement relation describing normal contact of the spatula is given
by the function P (u). This function effectively describes the contact behaviour of the spatula
and it is therefore inserted at the tips of the overall seta model. At the finite element nodes at
the seta tips we thus have the nodal contact force vector

fn
c := P (r)n2 , (30)

where r is the distance between substrate and seta tip. In view of equation (26), the nodal
stiffness matrix then simply becomes

kn
c :=

∂fn
c

∂un
=

∂P

∂r
n2 ⊗

∂r

∂un
= P ′(r)n2 ⊗ n2 , (31)

where un denotes the nodal displacement.

5 Spatula pull-off results

Using the contact model formulated in the two preceding sections we now consider the detailed
pull-off behaviour of a single spatula adhering to a smooth substrate. The spatula geometry is
modelled as described in section 2.3. The spatula shaft is inclined by the angle αsp, considered
at 60◦ here. The shaft is clamped at the end and is subjected to a prescribed displacement u,
which is perpendicular to the substrate surface. The boundary load P , which is required to
prescribe u and which is also perpendicular to the surface, is obtained from a finite element
computation. P corresponds to the total adhesion force acting on the spatula pad. As men-
tioned before, the contact model according to section 4 is frictionless, and hence no horizontal
forces are present in the spatula. The extension to friction will be considered in future work.
Since the spatula is a thin and elongated structure it is modelled by a beam formulation as is
outlined in the previous section. The cross-section of the beam varies as is given by eqn. (3).
For the computation, the nonlinear beam element formulation of Simo and Vu-Quoc (1986) is
used, which captures the exact beam kinematics. Along the pad length Lp 300 elements are
used, along the shaft 35 elements are used. A larger mesh refinement is needed for the pad in
order to resolve the fine-scale adhesion forces described by eqns. (18), (20) and (21).
Figure 7 shows the deformation (frame a.) and the load-displacement curve P (u) (frame b.)
during the pull-off simulation of the spatula. Five distinct deformation states, marked by A,
B, C, D and E, are shown in both frames. The deformation is drawn to scale. The deformed
spatula is viewed from the side (looking along the spatula width w). Due to the symmetry of
the geometry, the material and the loading of the spatula, no significant deformations occur in
the direction of w, and the problem can be essentially treated as a 2D beam element problem
(Wriggers, 2008). The deformation at state B marks the configuration with zero pull-off load
(u = 0, P = 0). However, due to the bending of the pad the spatula is not stress free at state B.
The spatula height Hsp, introduced in section 2.3, is defined as the height of the deformed spat-
ula in state B. Pushing the spatula down towards the substrate (u < 0) takes us from state B
to state A. Pulling the spatula upwards (u > 0) takes us from state B via state C to state E.
At state C the spatula suddenly jumps-off-contact, which is indicated by the dashed line in the
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Figure 7: Spatula pull-off: a. Spatula deformation, b. Load-displacement curve

load-displacement curve. The jump-off is a dynamic process which cannot be obtained from
the quasi-static simulation considered here. At state E the spatula is fully released from the
substrate. Pushing it back down we move from state E via state D, where a jump-to-contact
occurs, to state B.
The maximum spatula pull-off load, which is reached prior to state C, is 7.9 nN. This value is
in agreement with measured spatula pull-off loads reported in the literature, e.g. see Huber
et al. (2005) and Sun et al. (2005), who have measured values around 10 nN. It is important to
note that these values are much smaller that the overestimated value one obtains when taking
the maximum of eqn. (21) and multiplying it with the pad surface, as is considered by Autumn
et al. (2000) and in our preliminary study (Sauer, 2008a). (Here, according to figure 5 the pad
surface is about 0.055 (µm)2 so that this overestimated pull-off load becomes 6.8 µN, which is
nearly a thousand times larger than the computed value.) This results corresponds to assuming
incorrectly that the spatula pad separates from the substrate at once. In reality the spatula
pad is peeling-off successively, as is shown by the finite element results of figure 7.a.
Apart from reducing the pull-off load, the peeling has another major consequence, which is in-
strumental to the adhesion mechanism of the gecko: According to figure 7.b the spatula release
occurs at a displacement of about 180 nm, which is more than a hundred times larger than
the release distance of eqn. (21). (At a distance of d = 1.8 nm the adhesion force according to
eqn. (21) has dropped to less than 1% of its maximum, so that we can speak of release.) Thus,
the peeling mechanism leads to a huge increase of the range of adhesion. Effectively, the spatula
extends the range of adhesion from the nanometer scale to the micrometer scale.
A parameter study of the spatula pull-off behaviour, like an investigation of the influence of
spatula inclination αsp and the spatula stiffness will be studied in future work. Another inter-
esting investigation is the consideration of friction between spatula and substrate, since it may
have a significant influence on the pull-off load.

6 Seta pull-off results

Now that the pull-off behaviour of the spatula is known we turn to study the pull-off behaviour
of the gecko seta. The spatula pull-off function P (u) given in figure 7 is inserted as a point
load at the seta tips according to eqns. (30) and (31). Therefore the spatula P (u) data is
approximated by a piecewise defined polynomial curve: Between points A and B a polynomial
of degree p = 4 is chosen, between points B and C a polynomial of degree p = 8 is chosen and
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between points D and E a polynomial of degree p = 8 is used. The polynomial coefficients are
determined by solving the corresponding least squares problem (Demmel, 1997). The jumps in
the P (u) curve can lead to problems in quasi-static simulations, especially if the seta structure
is soft. In those cases relaxation techniques can be used to avoid numerical problems. Since the
considered contact model is frictionless the seta pull-off force, like the spatula pull-off force, is
perpendicular to the substrate surface.
The geometry of the branched seta structure is modelled as described in section 2.2 and table 2.
The cross section of the seta branches is varying as specified in table 1. Like the spatula, the
seta is a comparably thin and elongated structure which is efficiently and accurately modelled
by the nonlinear beam formulation of Simo and Vu-Quoc (1986). A mesh density of 5 elements
per seta branch results in sufficient accuracy. Altogether a finite mesh with less than 2000
elements is obtained which means that a finite element solution step within the seta pull-off
simulation will only take a few minutes to compute on a modern desktop computer.
Figures 8 and 9 show the deformation and load-displacement curve of the gecko seta during
pull-off. State A corresponds to the unloaded seta configuration where both P and u are
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Figure 8: Seta pull-off: a. Load-displacement curve, b. Partly released seta at step C
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Figure 9: Seta pull-off: configurations at step A and C

zero. Increasing u, the pull-off behaviour is approximately linear up to state B, where all seta
tips are still adhering. Between state B and C the P (u) curve is spiky due to the successive
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pull-off of the individual seta tips. The deformation of state C (see fig. 8.b and fig. 9) shows
the partly released seta structure. Here the released branches are colored in red. Immediately
after state C the entire seta jumps-off contact. The maximum pull-off load that is reached
beforehand, at a displacement of 3µm, is about 0.44µN. This value is significantly less than
256×7.9 nN = 2.02µN which is the theoretical limit one obtains assuming all 256 seta tips detach
simultaneously. Such an assumption is unrealistic due to the flexibility of the seta structure.
Interestingly the pull-off forces measured by Autumn et al. (2002), which are around 40µN, are
still larger than this theoretical limit and are thus in disagreement with our simulation result.
An apparent disagreement also exists between the seta pull-off value measured by Autumn
et al. (2002) (≈ 40µN) and the spatula pull-off value measured by Huber et al. (2005) and
Sun et al. (2005) (around 10 nN): The difference between the two measurements is far too large
to be in agreement with the observation that each seta contains only a few hundred spatulae.
A possible explanation which could reconcile the disagreement is the influence of the loading
rate. If the loading rate is increased, the pull-off load also increases due to the viscosity of the
system. Another influence is given by the friction in the contact interface between spatula and
substrate. Friction can also lead to an increase of the pull-off load. The influence of these effects
will be investigated in future work.
To assess the influence of the seta stiffness on the pull-off behaviour we consider the following
variation: The seta length (together with parameters D0 and Hi (i = 0, ..., 4)) is increased
by a factor of 1.5, whereas the branch diameter 2Ri (i = 0, ..., 4) and Young’s modulus E
are both decreased by a factor of 1.5. This will lower the seta stiffness, which in the linear
regime is proportional to ER4

i /L
3, by a factor of about 1.58 = 25.6. The deformation and load-

displacement curve for this parameter variation are displayed in figures 10 and 11. Compared

0 5 10 15 20 25 30
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

pull−off displacement  u   [ µm ]

pu
ll−

of
f f

or
ce

  P
   

[ µ
N

 ]

A

B

C

D

E

a. b.

Figure 10: Soft seta pull-off: a. Seta deformation, b. Load-displacement curve

to the stiff seta the deformations are much larger now, and are well into the nonlinear regime.
Five configurations, denoted by A through E, are shown during seta pull-off. State A marks
the unloaded seta (u = 0, P = 0). Between state A and B, where all seta tips are still adhering,
the P (u) curve is not linear as was the case beforehand. The part between B and E marks
the successive pull-off of the individual seta tips. The partial release of the seta at state C is
shown in figure 11. State D is a state during the jump-off contact, which is statically unstable.
To simulate the jump-off contact, a relaxation technique is used, introducing artificial viscous
forces that vanish once equilibrium is reached.
The maximum pull-off load, occurring at state C, is about 0.42µN, which is not much different
than the value obtained for the stiff seta (figure 8). The maximum load occurs at a displacement
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A C

Figure 11: Soft seta pull-off: configurations at step A and C

of about 25µm, which is much larger than before. In figure 7 we have seen that the spatula
structure extends the range of the molecular adhesion (about 1.8 nm) by a factor of 100 (to
about 180 nm). Compared to the range of the spatula adhesion, the seta structure extends
the range of adhesion to even larger length scales: A further factor of about 17 in case of
the original seta and a further factor of about 140 for the soft seta. Therefore, to access and
exploit nanoscale adhesion like van der Waals interaction at macroscopic scales, a soft seta
microstructure is advantageous.

7 Conclusion

This work presents a novel multiscale model for the mechanical description of an adhering
gecko seta. The multiscale approach combines three distinct models: an overall seta model at
the largest scale, a detailed spatula submodel at the intermediate scale and a molecular inter-
action submodel at the smallest scale. The approach bridges the length scales between 0.1 nm
and 100µm, length scales that are separated by six orders of magnitude. The model is cast into
a nonlinear finite beam element framework, which is used to simulate and study the pull-off
behaviour of both spatula and seta.
From the simulations the maximum pull-off force for both spatula and seta are obtained. While
the spatula force is in excellent agreement with measurements from the literature, the seta force
we obtain does not agree with the measurements of Autumn et al. (2002). A possible reason for
the difference is given. It is further explained why the pull-off forces are strongly overestimated
if the peeling behaviour of the spatula and seta structure is neglected as is sometimes considered
in the literature. The simulation results also show how the flexibility of the seta and spatula
structure leads to the accessibility of nanoscale adhesion on the micrometer scale, which is one
of the crucial features of gecko adhesion.
There are several further aspects which are planned to be considered in future work. One is a
study of the influence of the various model parameters used for describing the geometry, mate-
rial and loading of seta and spatula. A second aspect is to model and study the influence of the
substrate roughness on the pull-off behaviour of both spatula and seta. Another extension is the
modelling of friction between seta and substrate. This will require the consideration of friction
at the molecular scale, and it may be helpful to include a fourth modelling level at this scale
within the multiscale environment. A fourth extension is to simulate and study the transient
pull-off behaviour considering both viscous forces and inertia. It is also useful to extend the
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multiscale modelling to the millimeter scale by including another model level which effectively
describes the overall seta behaviour.
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