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Abstract: This paper presents two different formulations for the modeling of thin laminated
composite shells, which do not need any numerical integration through the shell thickness. The
two proposed formulations are suitable for thin rotation-free shells based on Kirchhoff–Love
kinematics. The composite shell is modeled in the framework of equivalent single layer (ESL)
theory and the kinematics are adopted from classical laminated plate theory. The two formula-
tions allow for any desired nonlinear isotropic or anisotropic material model as well as arbitrary
large strains and deformations. The presented shell models can be used to analyze any arrange-
ment and material behavior of the laminate layers. The FE solution is based on isogeometric
analysis (IGA). Quadratic NURBS-based elements are used to ensure the smoothness required
for the analysis of thin shells. The robustness and accuracy of the formulation is demonstrated
by various numerical examples.

Keywords: Anisotropic composites, equivalent single layer shell theory, isogeometric analysis,
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1 Introduction

Laminated composite shells are widely used in aerospace and automobile industries as well as
other areas in civil, mechanical and manufacturing engineering due to their high stiffness-to-
weight ratio. Further, one can find many applications in nano- and micro-electromechanical
systems (Lyshevski, 2002), which can be best modeled by thin composite structures. The the-
oretical and numerical analysis of laminated composite shells has been the subject of extensive
research in the last decades (for detailed surveys, see e.g. Reddy and Robbins, 1994; Yang et al.,
2000; Carrera, 2002; Carrera and Brischetto, 2009; Zhang and Yang, 2009; Qatu et al., 2010;
Kreja, 2011; Qatu et al., 2012). In particular, different theories and methodologies for the mod-
eling and analysis of composite laminates are collected in the classic references of Ochoa and
Reddy (1992), Carrera (2002) and Reddy (2004). In general, there are three different approaches
to describe a composite laminate: (1) Equivalent single layer (ESL), (2) layer-wise (LW) and
(3) continuum-based theories (Reddy, 1989). An equivalent single layer theory assumes a con-
tinuous strain distribution, which is usually considered to be linear, within the laminated layers
of the shell. In contrast, in a layer-wise theory, piecewise continuous strain distributions are
considered for each layer. In the third approach, a laminated shell is modeled as a 3D continuum
with appropriate assumptions for the thickness.
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Regarding the material modeling, there are different micromechanical homogenization methods
for composite materials (Li and Wang, 2008). For instance, Lin et al. (2016) examine different
micromechanics methods, most of which are based on the Eshelby inclusion theory (Eshelby,
1957), to evaluate the effective moduli of soft Neo-Hookean composites. The Eshelby theory is
later extended for the analysis of plates and shells. For example, Vel and Batra (1999, 2000,
2001) use the Eshelby-Stroh formalism (Eshelby et al., 1953; Stroh, 1958) to provide closed
form solutions for anisotropic laminated plates in terms of infinite series. Furthermore, Aragh
et al. (2012), Lei et al. (2013) and Thomas and Roy (2015) have used the Eshelby–Mori–
Tanaka approach (Eshelby, 1957; Mori and Tanaka, 1973) for the structural analysis of carbon
nanotube-reinforced plates and panels. The homogenization of the shell layers corresponds to
thickness integration in shell theory, which is inherent to most shell theories and is performed
either analytically or numerically.

In the last few years, various formulations are introduced for the the modeling of thin lami-
nated composite shells based on isogeometric analysis, many of which follow the ESL approach.
For instance, Bazilevs et al. (2011) use the bending strip method of Kiendl et al. (2010) to
model composite rotor blades; however, they consider only a linear strain-stress relation, based
on St. Venant–Kirchhoff material model. The formulation is later extended by Bazilevs et al.
(2015); Deng et al. (2015) to predict damage in composites. Furthermore, Kapoor and Kapania
(2012), Casanova (2013), Thai et al. (2014) and Thai et al. (2015) present isogeomrtric formu-
lations for the analysis of composite plates based on first and higher order shear deformation
theories. On the other hand, the LW approach is also investigated for the isogeometric analysis
of laminated composites, in particular thin shells (Thai et al., 2013; Guo et al., 2014a,b; Guo
and Ruess, 2015; Guo, 2016). Besides, 3D continuum shell formulations are also used for the
modeling of composite materials in the framework of IGA (Hosseini et al., 2014, 2015).

In the current paper, the isogeometric finite shell element formulation of Duong et al. (2016)
and Roohbakhshan and Sauer (2016) is extended to model thin composite shells. The presented
model is based on ESL theory and it adds the following novelties to the existing literature on
the computational modeling of thin laminated composite shells: (1) It allows any isotropic
or anisotropic nonlinear constitution and yet (2) it does not need any numerical integration
through the shell thickness. Furthermore, since the laminated composite shells are usually fiber-
reinforced, the in-plane anisotropy is systematically considered in the computational model.

The next sections of this paper are organized as follows: Sec. 2 describes the theoretical frame-
work including the rotation-free thin shell theory and composite shell models. Sec. 3 discusses
the methodology of this work, i.e. NURBS-based FE solution. In Sec. 4, several numerical
examples are presented to illustrate the capabilities of the introduced models. Sec. 5 concludes
the paper.

2 Theory of composite shells

Equivalent single layer theories include the classical laminated plate theory (CLPT), the first
order shear deformation theory (FSDT) and higher order shear deformation theory (HSDT)
(Reddy, 2004). Here, we adopt the kinematics inherent to classical laminated plate theory,
which is based on the Kirchhoff–Love hypothesis. Thus, it is assumed that the shell cross
sections (1) remain straight, (2) do not elongate and (3) remain perpendicular to the shell
mid-surface after deformation.

Beside the Kirchhoff–Love assumptions, the following assumptions are also considered: (1)
The layers are perfectly bonded together. (2) Each layer is of uniform thickness. (3) The

2



material can have any desired nonlinear isotropic or anisotropic constitution. (4) The strains
and deformations can be arbitrary large.

As shown in Fig. 1, we describe the laminated layers of a composite shell for two cases. In
the general setup, the laminated layers can have different thickness and mechanical properties
and they are not necessarily symmetric w.r.t. the shell mid-surface. As a specific case, one
can suppose that the geometrical and material properties of laminates are symmetric w.r.t. the
shell mid-surface. For both the cases, the boundaries of each layer are defined by the distance
Ti measured from the mid-surface. Accordingly, the ith layer is located between Ti−1 and Ti,
where i = 1, ..., nl. For the general case, nl is the total number of layers, numbered from the
bottom to the top surface of the shell so that T0 = −T/2 and Tnl

= T/2 (see Fig. 1.a). For the
symmetric case, the total number of layers is 2nl and the layer numbers are mirrored w.r.t. the
mid-surface implying T0 = 0 and Tnl

= T/2 (see Fig. 1.b).

(a) (b)

Figure 1: Coordinate system and layer numbering of a laminated shell: (a) General and (b)
symmetric configurations.

2.1 Thin shell theory

Thin rotation-free shells are formulated based on classical shell theory, which roots in the
Kirchhoff-Love hypothesis (Reddy, 2006); thus, the unknowns are only the displacement degrees
of freedom. The kinematics and the governing equations of thin shells are summarized here. For
a detailed description see e.g. Naghdi (1982), Steigmann (1999) and Sauer and Duong (2015).
The presented theory is based on the differential geometry of curved surfaces (see e.g. Kreyszig,
1991); therefore, the formulations are described in a convective curvilinear coordinate system.

Note 2.1. Following the terminology of Duong et al. (2016) and Roohbakhshan and Sauer
(2016), (1) the variables of three-dimensional continua are distinguished by a tilde. (2) The

corresponding quantities of a shell layer
∗
S, located at ξ within the shell thickness, are specified

by an asterisk. (3) A hat is used to denote the quantities calculated at ξ = 0, i.e. •̂ = (
∗•)ξ=0. In

general, such quantities can be defined for each shell layer and, on the shell mid-surface, they can
be dimensionally linked to a counterpart in membrane theory (e.g. aαβ = ĝαβ or ταβ = T τ̂αβ)

or there might be no corresponding quantity (e.g. for τ̂αβ,3 ) in membrane theory. (4) All the
variables in the reference and current configurations are denoted by uppercase and lowercase
letters, respectively.
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2.1.1 Kinematics

In the current configuration, the shell mid-surface S = Ŝ can be described by the mapping

x = x(ξα) , (α = 1, 2) , (1)

where ξα are the convective coordinates defined in a parametric domain. According to this
surface parameterization, the co-variant tangent vectors aα = ∂x/∂ξα are obtained, which leads
to the metric tensor with co-variant components aαβ = aα · aβ and contra-variant components
[aαβ] = [aαβ]−1. Then, the contra-variant tangent vectors can be obtained as aα = aαβ aβ. The
current surface area is da = Ja dξ1 dξ2, where Ja :=

√
aαβ is the surface Jacobian determinant.

Having the co-variant tangents at hand, the surface normals are defined as n = (a1 × a2)/Ja.
Then, the co-variant components of the curvature tensor are bαβ = n · aα,β, where aα,β :=
∂aα/∂ξ

β is the parametric derivative of aα. The convective bases {a1, a2, n} and {a1, a2, n}
can then be used to decompose any vector or tensor into in-plane and out-of-plane components.
For instance, the usual identity tensor 1 ∈ R3 is decomposed as

1 = i+ n⊗ n , (2)

where
i = aαβ aα ⊗ aβ = aα ⊗ aα = aα ⊗ aα (3)

is the surface identity tensor. Similarly, corresponding quantities can be defined on the reference
configuration S0 (see Sauer et al., 2014; Sauer and Duong, 2015, for more details).

For thin shells, the introduced description of the mid-surface can be extended to any shell layer
∗
S located at ξ ∈ [−T/2, T/2], where T is the shell thickness and ξ is an out-of-plane coordinate
defined in the normal direction. Accordingly, any material point x̃ in the 3D continuum of the
shell is related to a corresponding point on the mid-surface as

x̃ = x+ ξn . (4)

Such layer-wise kinematical description is required for the integration/projection process (Duong
et al., 2016). Furthermore, it can be shown that the co-variant components of the metric tensor

on the shell layer
∗
S are

gαβ = aαβ − 2 ξ bαβ (5)

and the corresponding contra-variant components are [gαβ] = [gαβ]−1 (Roohbakhshan and
Sauer, 2016). To describe the deformation and stress-strain relation, our formulation uses
the right Cauchy–Green deformation tensor, the Green–Lagrange strain tensor and the bending
strain tensor. The right Cauchy–Green deformation tensors on the mid-surface and the shell
layer

∗
S are, respectively

C = aαβA
α ⊗Aβ ,

∗
C = gαβG

α ⊗Gβ .
(6)

The corresponding Green–Lagrange strain tensors are defined as

E :=
1

2

(
C − I

)
= EαβA

α ⊗Aβ ,

∗
E :=

1

2

( ∗
C −

∗
I
)

=
∗
EαβG

α ⊗Gβ ,
(7)

where I and
∗
I are the surface identity tensors for S0 and

∗
S0 in the reference configuration,

Eαβ =
1

2

(
aαβ −Aαβ) (8)
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are the co-variant components of the Green–Lagrange strain on the mid-surface S and

∗
Eαβ =

1

2

(
gαβ −Gαβ) (9)

are the corresponding components on the shell layer
∗
S. Likewise to E, the bending strain tensor

is defined as

K := KαβA
α ⊗Aβ , (10)

with
Kαβ = bαβ −Bαβ . (11)

The variation of the introduced kinematical quantities can be found in Sauer and Duong (2015),
Duong et al. (2016) and Roohbakhshan and Sauer (2016).

2.1.2 Governing equation

Considering the balance of linear momentum and mass conservation, the strong form of the
governing equation is (Sauer and Duong, 2015)

T α;α + f = ρ v̇ ∀x ∈ S , (12)

where T α is the traction vector defined on the face normal to aα, f = fα aα + pn is the pre-
scribed body force on S, ρ is the mass per current surface area and v̇ is the material acceleration.
In general, on a face normal to ν = να a

α, the sectional forces are collected in the stress tensor

σ := Nαβ aα ⊗ aβ + Sα aα ⊗ n (13)

and the distributed section moments are collected in the moment tensor

µ := −Mαβ aα ⊗ aβ (14)

such that the traction and the distributed moment vectors are given by Cauchy’s theorem as

T := σTν ,

M := µT ν .
(15)

Here, Nαβ, Sα and Mαβ are the distributed sectional force and moment components (see Sauer
and Duong (2015) for details). Furthermore, it can be shown that (Sauer and Duong, 2015)

σαβ = Nαβ − bβγMγα ,

Sα = Mβα
;β ,

(16)

where σαβ and Mαβ follow from constitution.

Introducing ταβ = J σαβ and Mαβ
0 = J Mαβ, for any admissible variation δx ∈ V, the weak

form of Eq. (12) is derived as (Sauer and Duong, 2015)

Gin +Gint −Gext = 0 ∀ δx ∈ V , (17)

where we have defined the inertial, internal and external virtual work contributions due to
variation δx, respectively as

Gin =

∫
S0
δx · ρ0 v̇ dA ,

Gint =

∫
S0

1

2
δaαβ τ

αβ dA+

∫
S0
δbαβM

αβ
0 dA ,

Gext =

∫
S
δx · f da+

∫
∂tS

δx · tds+

∫
∂mS

δn ·mτ ν ds+ [δx ·mν n
]
.

(18)
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Here, t, mτ and mν are distributed forces and moments prescribed on the boundary. It should
be noted that ρ0, τ

αβ and Mαβ
0 are surface quantities resulting from thickness integration, as

addressed in Sec. 2.2.

2.1.3 Linearized weak form

The weak form (17) is highly nonlinear, and needs to be linearized w.r.t. the metric and curvature
tensors, in order to be solved by the Newton–Raphson method (see Sec. 3.4). Following Sauer
and Duong (2015) and Duong et al. (2016), the linearization in the absence of inertial and
non-constant external forces is

∆Gint =

∫
S0

1
2δaαβ

(
cαβγδ 1

2∆aγδ + dαβγδ ∆bγδ
)

dA

+

∫
S0

δbαβ
(
eαβγδ 1

2∆aγδ + fαβγδ ∆bγδ
)

dA

+

∫
S0

(
ταβ 1

2∆δaαβ +Mαβ
0 ∆δbαβ

)
dA ,

(19)

where

cαβγδ := 2
∂ταβ

∂aγδ
, dαβγδ :=

∂ταβ

∂bγδ
,

eαβγδ := 2
∂Mαβ

0

∂aγδ
, fαβγδ :=

∂Mαβ
0

∂bγδ

(20)

are the material tangents.

2.2 Thin composite shell models

In Roohbakhshan and Sauer (2016), three different models – namely the numerically-projected
shell model, analytically-projected shell model and directly-decoupled shell model – are introduced
to formulate the constitutive laws, stress and bending moment resultants and their correspond-
ing stiffness tangents. Here, those three shell models are extended to laminated composite
shells.

2.2.1 Numerically-projected shell model

The numerically-projected shell model is the most general formulation that can be used for
both the asymmetric and symmetric composite shells; however, it generally requires numerical
integration through the shell thickness. The stress and bending moment resultants thus are
(Roohbakhshan and Sauer, 2016)

ταβ =

nl∑
i=1

∫ Ti

Ti−1

τ̃αβi dξ ,

Mαβ
0 = −

nl∑
i=1

∫ Ti

Ti−1

ξ τ̃αβi dξ .

(21)

where

τ̃αβi := 2
∂W̃i(gαβ)

∂gαβ
(22)
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is the in-plane Kirchhoff stress on a shell layer within the ith laminate and W̃i(gαβ) is the strain
energy density function of the same laminate layer. In the same fashion, the stiffness tangents
are

cαβγδ =

nl∑
i=1

∫ Ti

Ti−1

c̃αβγδi dξ ,

dαβγδ = eαβγδ = −
nl∑
i=1

∫ Ti

Ti−1

ξ c̃αβγδi dξ ,

fαβγδ =

nl∑
i=1

∫ Ti

Ti−1

ξ2 c̃αβγδi dξ ,

(23)

where

c̃αβγδi := 2
∂τ̃αβi
∂gγδ

= 4
∂2W̃i(gαβ)

∂gαβ ∂gγδ
. (24)

2.2.2 Analytically-projected shell model

Following Roohbakhshan and Sauer (2016), one can use a first-order Taylor expansion of τ̃αβi
about ξ = 0 to approximate the stress and bending moment resultants given by Eq. (21). In
this approach, one can then analytically evaluate the integrals of Eq. (21) without any need
for numerical integration. For all the laminates through the shell thickness, the stress is thus
approximated as

τ̃αβi = τ̂αβi + ξ τ̂αβi,3 , (25)

where we have defined
τ̂αβi :=

(
τ̃αβi

)
ξ=0

,

τ̂αβi,3 :=
(∂τ̃αβi
∂ξ

)
ξ=0

.

(26)

2.2.2.1 General setup

Plugging Eq. (25) into Eq. (21) and integrating analytically, we obtain (see Fig. 1.a)

ταβ =

nl∑
i=1

[(
Ti − Ti−1

)
τ̂αβi +

1

2

(
T 2
i − T 2

i−1
)
τ̂αβi,3

]
,

Mαβ
0 =

nl∑
i=1

[1

2

(
T 2
i−1 − T 2

i

)
τ̂αβi +

1

3

(
T 3
i−1 − T 3

i

)
τ̂αβi,3

]
.

(27)

The corresponding stiffness tangents are

cαβγδ =

nl∑
i=1

[(
Ti − Ti−1

)
ĉαβγδi +

1

2

(
T 2
i − T 2

i−1
)
ĉαβγδi,3

]
,

dαβγδ =

nl∑
i=1

[(
Ti − Ti−1

)
d̂αβγδi +

1

2

(
T 2
i − T 2

i−1
)
d̂αβγδi,3

]
,

eαβγδ =

nl∑
i=1

[1

2

(
T 2
i−1 − T 2

i

)
ĉαβγδi +

1

3

(
T 3
i−1 − T 3

i

)
ĉαβγδi,3

]
,

fαβγδ =

nl∑
i=1

[1

2

(
T 2
i−1 − T 2

i

)
d̂αβγδi +

1

3

(
T 3
i−1 − T 3

i

)
d̂αβγδi,3

]
,

(28)
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for which we have introduced

ĉαβγδi = 2
∂τ̂αβi
∂aγδ

, d̂αβγδi =
∂τ̂αβi
∂bγδ

,

ĉαβγδi,3 = 2
∂τ̂αβi,3
∂aγδ

, d̂αβγδi,3 =
∂τ̂αβi,3
∂bγδ

.

(29)

2.2.2.2 Symmetric setup

If the laminated layers are distributed symmetrically w.r.t. the shell mid-surface, Eq. (27) can
be reduced to

ταβ = 2

nl∑
i=1

(
Ti − Ti−1

)
τ̂αβi ,

Mαβ
0 = −2

3

nl∑
i=1

(
T 3
i − T 3

i−1
)
τ̂αβi,3 ,

(30)

where the layers are numbered according to Fig. 1.b. From Eq. (30), the stiffness tangents are
derived as

cαβγδ = 2

nl∑
i=1

(
Ti − Ti−1

)
ĉαβγδi , dαβγδ = 2

nl∑
i=1

(
Ti − Ti−1

)
d̂αβγδi ,

eαβγδ = −2

3

nl∑
i=1

(
T 3
i − T 3

i−1
)
ĉαβγδi,3 , fαβγδ = −2

3

nl∑
i=1

(
T 3
i − T 3

i−1
)
d̂αβγδi,3 .

(31)

Remark 2.2. In the formulations presented so far, it is assumed that the shell is fully-
stressed, i.e. all the layers through the shell thickness contribute to the strain energy den-
sity function and the corresponding stress and bending moment resultants. However, as dis-
cussed by Roohbakhshan and Sauer (2016), depending on the constitution and application, the
shell might only be partially-stressed, i.e. within each laminate layer, only a portion of shell
[Ti1, Ti2] ⊂ [Ti−1, Ti] might be active. Such a scenario happens e.g. for concrete, which bears
only compression, or collagen fibers, which support only tension. This implies that

ταβ =

nl∑
i=1

∫ Ti2

Ti1

τ̃αβi dξ ,

Mαβ
0 = −

nl∑
i=1

∫ Ti2

Ti1

ξ τ̃αβi dξ

(32)

for the numerically-projected approach and

ταβ =

nl∑
i=1

[(
Ti2 − Ti1

)
τ̂αβi +

1

2

(
T 2
i2 − T 2

i1

)
τ̂αβi,3

]
,

Mαβ
0 =

nl∑
i=1

[1

2

(
T 2
i1 − T 2

i2

)
τ̂αβi +

1

3

(
T 3
i1 − T 3

i2

)
τ̂αβi,3

] (33)

for the analytically-projected approach, where Ti1 and Ti2 need to be determined specifically
for each problem.
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2.2.3 Directly-decoupled shell model

The directly-decoupled shell model is based on the idea that the stored energy of a thin shell,
whose material is symmetric w.r.t. the shell mid-surface, can be fully decoupled into membrane
and bending parts (Roohbakhshan and Sauer, 2016). Hence, the directly-decoupled approach
only works for symmetric laminated shells. Accordingly, the stored energy W is decoupled as

W (aαβ, bαβ) = WM(aαβ) +WB(bαβ) , (34)

where the membrane part WM can be obtained e.g. by the projection method of Roohbakhshan
et al. (2016), which results in

WM(aαβ) =

nl∑
i=1

(
Ti − Ti−1

)
Ŵi(aαβ) , (35)

where
Ŵi(aαβ) :=

[
W̃i(gαβ)

]
ξ=0

(36)

is the constitutive law of the ith laminate layer formulated in terms of the mid-surface metric
tensor aαβ. The bending part is then

WB(bαβ) =
1

24

nl∑
i=1

(
T 3
i − T 3

i−1
)
ĉαβγδ0i KαβKγδ , (37)

where
ĉαβγδ0i :=

(
ĉαβγδi

)
S0

(38)

are the components of the membrane elasticity tensor prior to deformation and

ĉαβγδi := 4
∂2Ŵi(aαβ)

∂aαβ ∂aγδ
. (39)

Thus, the stress and bending moment resultants are

ταβ := 2
∂WM(aαβ)

∂aαβ
= 2

nl∑
i=1

(
Ti − Ti−1

)
τ̂αβi ,

Mαβ
0 :=

∂WB(bαβ)

∂bαβ
=

2

3

nl∑
i=1

(
T 3
i − T 3

i−1
)
ĉαβγδ0i Kγδ ,

(40)

with

τ̂αβi := 2
∂Ŵi(aαβ)

∂aαβ
. (41)

The corresponding stiffness tangents are

cαβγδ = 2

nl∑
i=1

(
Ti − Ti−1

)
ĉαβγδi ,

fαβγδ =
2

3

nl∑
i=1

(
T 3
i − T 3

i−1
)
ĉαβγδ0i

(42)

and dαβγδ = eαβγδ = 0, which illustrates the decoupling.
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3 FE Solution

The finite element solution is based on the IGA concept (Hughes et al., 2005), which uses
non-uniform rational B-spline (NURBS) functions for both the geometrical representation and
discretization of the weak form (17). The main advantage of NURBS-based finite elements is
the high smoothness in the representation of geometry and solution, which satisfies the C1-
continuity required for the modeling of thin rotation-free shells based on the Kirchhoff–Love
hypothesis (Kiendl et al., 2009). Furthermore, quadratic and higher order NURBS-based FE
discretizations help to remove membrane locking. This section summarizes the main steps of
the FE solution, i.e. isogeometric discretization, FE approximation and discretized weak form.
Further details of the FE implementation can be found in Duong et al. (2016).

3.1 Isogeometric discretization

A comprehensive description of NURBS and B-splines is outside the scope of this paper and
further conceptual, theoretical and mathematical details can be found in the classical references
for IGA (e.g. Hughes et al., 2005; Cottrell et al., 2009). In general, a NURBS-based surface,
which is an extension of a B-spline surface, is described by a mapping from a two dimensional
parametric domain. The mapping is determined by the desired polynomial order p and q for
each dimension, a set of control points P = {PA}

ncp

A=1 that define the shape, and two knot
vectors Ξ = {ξ1, ξ2, · · · , ξn+p+1} and H = {η1, η2, · · · , ηm+q+1}. Here, ncp = n×m is the total
number of control points of the patch with m and n to be the number of control points in the
directions ξ and η, respectively. Besides, for the numbering of control points, we need to define
a mapping A = A(i, j) based on the grid of control points, where i = 1, · · · , n and j = 1, · · · ,m.
The NURBS surface is constructed from the rational basis functions

Rp,qA (ξ, η) =
wA N̂

p
i (ξ) N̂ q

j (η)

W (ξ, η)
, (43)

where wA are the weights associated to the control points and N̂p
i (ξ) and N̂ q

j (η) are the B-spline
basis functions in each dimension and the weighting function is

W (ξ, η) =

n∑
k=1

m∑
l=1

wB N̂
p
k (ξ) N̂ q

l (η) , (44)

with B = A(k, l). In matrix form, Eq. (43) can be written as

R(ξ, η) =
WN̂(ξ, η)

W (ξ, η)
, (45)

where R(ξ, η) := {Rp,qA (ξ, η)}ncp

A=1, N̂(ξ, η) := {N̂p
i (ξ) N̂ q

j (η)}ncp

A=1 and W is a diagonal matrix
containing the weights of the control points. Then, the shell mid-surface is discretized by
NURBS as

x(ξ, η) =

ncp∑
i=1

Rp,qA (ξ, η)PA = PTR(ξ, η) , ξ ∈ [ξ1, ξn+p+1] , η ∈ [η1, ηm+q+1] , (46)

where P := {PA}
ncp

A=1.

Furthermore, with the help of the Bézier extraction operator (Borden et al., 2011), the global
parametric domains Ξ and H are changed to the domain of the Bézier elements. Then the shape
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functions are implemented as a classical FEM. Thus, the rational shape function of an element
Ωe is defined as

Re(ξ, η) =
WeCeBe

W (ξ, η)
, ξ, η ∈ [−1, 1] , (47)

where Re(ξ, η) = {ReA(ξ, η)}n
e
cp

A=1 is the set of the rational shape functions, necp is the number of
control points per element, We is the corresponding diagonal matrix of the element, Be collects
the Bernstein polynomials of the element and Ce = Ce

ξ ⊗Ce
η is the localized Bézier extraction

operator. To construct the classic finite element setup, for the Ath control point (=node), the
corresponding shape function in element Ωe is set to NA(ξ, η) = ReA(ξ, η), where ReA is given by
Eq. (47).

3.2 FE approximation

Having the finite element shape functions, any point in the reference element Ωe
0 and deformed

element Ωe are obtained by the interpolation

X = NXe , x = Nxe , (48)

where Xe and xe are the positions of the control points in the reference and current configu-
rations, respectively, and N(ξ) := [N11, N21, ..., Nne

cp
1] is defined based on the NURBS shape

functions of Eq. (47). Having interpolation (48), the surface objects, such as aα, aα,β and
aα;β, are interpolated in the same fashion, e.g. aα = N,α xe, where we have defined N,α(ξ) :=
[N1,α1, N2,α1, ..., Nne

cp,α1] and NA,α = ∂NA/∂ξ
α. Considering a Bubnov–Galerkin formula-

tion, the variation δx is also approximated in the same way as the deformation, i.e. δx = N δxe
(see Duong et al., 2016, for more details).

3.3 Descretized weak form

Based on the introduced FE setting, the shell weak form (17) can be discretized, i.e. the surface
integration (e.g. Eq. (18)) is carried out over the element domains Ωe and then summed over
all the finite elements as

nel∑
e=1

(Gein +Geint −Geext) = 0 ∀ δxe ∈ V , (49)

where
Gein = δxT

e f ein ,

Geint = δxT
e

(
f eint
)
,

Geext = δxT
e

(
f eext
) (50)

and force vectors f ein, f eint and f eext are given by (Duong et al., 2016). Eqs. (49) and (50) result
in the nonlinear system of equations

f =

nel

A
e=1

(f ein + f eint − f eext) = 0 , (51)

which is constructed by the assembly of the element force vectors.
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3.4 Newton–Raphson iteration

As f = f(x) is highly non-linear, it needs to be solved iteratively, e.g. by the Newton–Raphson
method. This requires linearization of f w.r.t. x as

∆f = k∆x , (52)

where

k :=

nel

A
e=1

(keint − keext) , (53)

is the global stiffness matrix, built by the assembly of element stiffness matrices

keint :=
∂f eint
∂xe

, keext :=
∂f eext
∂xe

, (54)

which can be found in detail in Duong et al. (2016).

3.5 Numerical integration

Two kinds of numerical integration are needed for the presented formulation. First and fore-
most, the evaluation of weak form (18) requires numerical integration, which is performed with
standard Gaussian quadrature over a master domain ξα ∈ [−1, 1], α = 1, 2, like in classic FEA.
Second, if the numerically-projected shell model of Sec. 2.2.1 is used, the stress and bending
moment resultants and their corresponding tangents, i.e. Eqs. (21) and (23), are evaluated by
numerical integration. Similarly, the integration is carried out over a master domain θ ∈ [−1, 1].
For laminated composite shells, the change of integration interval needs to be taken into account.
For instance, the stress resultant is numerically approximated as

ταβ(x) =

nl∑
i=1

∫ Ti

Ti−1

τ̃αβi (x, ξ) dξ

=

nl∑
i=1

Ti − Ti−1
2

∫ +1

−1
τ̃αβi
[
x, fi(θ)

]
dθ

≈
nl∑
i=1

Ti − Ti−1
2

ngp∑
j=1

wj τ̃
αβ
i

[
x, fi(θj)

]
,

(55)

where

fi(θ) :=
1

2

[
Ti + Ti−1 + (Ti − Ti−1) θ

]
(56)

and ngp, wj and θj are the total number, weight and position of Gaussian quadrature points in
the master domain θ, respectively.

4 Numerical examples

In this section, three different numerical examples are investigated to show the performance of
the proposed formulation. For each laminate configuration (see Fig. 1), an example is presented.
The analytically-projected (AP) and directly-decoupled (DD) shell models, which do not need
numerical integration through the shell thickness, are compared with the numerically-projected
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(NP) shell model as the reference solution. The first example is devoted to a symmetric lami-
nate configuration. The second example evaluates a general laminate configuration, where the
laminate layers have arbitrary geometrical and material properties. Finally, the last example
simulates the pressurization of a laminated composite tube.

For all the examples, an incompressible anisotropic 3D Mooney–Rivlin material model with two
families of fibers is considered as

W̃ (Ĩ1, J̃) =
c̃1
2

(Ĩ1 − 3) +
c̃2
2

(Ĩ2 − 3) +

nf∑
j=1

c̃3j
(
Ĩj4 − 1

)2
+ p̃ g̃ , (57)

where Ĩ1, Ĩ2 and J̃ are the first, second and third invariants of the right Cauchy–Green de-
formation tensor C̃, respectively, g̃ := J̃ − 1 is the incompressibility constraint and p̃ is the
corresponding Lagrange multiplier to impose the constraint, which can be eliminated analyt-
ically (see Roohbakhshan and Sauer, 2016, for details). Further, Ĩj4 (j = 1, ..., nf) are the
invariants of the structural tensor of the fibers M̃ j := L̃j ⊗ L̃j , where L̃j is the principal
direction of the jth family of fibers.

Here, for all the laminate layers, the number of families of fibers is nf = 2 and the angle between
two families of fibers is given by 2γ.

4.1 Cantilever bending

As shown in Fig. 2.a, a cantilever strip, with L ×W × T = 10 × 3 × 0.3 [mm3], is subjected
to a distributed vertical force on its free end. The cantilever is meshed by 6 × 18 quadratic
NURBS-based elements (see Fig. 2.b). It is assumed that the composite shell is composed of
5 symmetric layers laminated as shown in Fig. 1.b. The layers are distributed equally through
the shell thickness T such that the thickness of each layer is T/5. The material properties vary
layer-wise as listed in Table 1. The angle γ is measured w.r.t. the longitudinal direction.

Layer #i Ti [T ] c̃1 [kPa] c̃2 [kPa] c̃3j [kPa] γ [deg]

1 0.1 30 120 600 ±60

2 0.3 20 60 1000 ±45

3 0.5 10 20 1000 ±30

Table 1: Material properties of the laminated composite cantilever.

Fig. 2.b shows the deformed configuration colored by I1 := trC. As can be observed, I1 slightly
deviates from 2, which is the expected value for the case of pure bending. Further, there is
transverse bending in the strip (like a saddle) due to the incompressibility of material. As
shown in Fig. 2.c, both DD and NP shell models predict the same deflection for the cantilever
tip. The total force applied on the cantilever tip is normalized by E I/L2, where E = 3 c̃1 and
I = T W 3/12 is the second moment of area of the cross section. For the numerically-projected
shell model, 2 Gaussian quadrature points are used for each laminate. As compared in Fig. 2.d
for different mesh sizes, the directly-decoupled shell model is numerically less expensive and more
efficient than the numerically-projected shell model; nevertheless, it is restricted to symmetric
layers.

Moreover, the anisotropic material model (57) can be reduced to an isotropic one simply by
neglecting the anisotropic term, i.e. by setting c̃3j = 0. Fig. 3 shows the bending of the same
cantilever of Fig. 2.a for this case. The corresponding material parameters are extracted from
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Table 1, setting c̃3j = 0. Like the anisotropic example, the directly-decoupled shell model is as
accurate as the numerically-projected shell model.
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Figure 2: The cantilever bending test with anisotropic Mooney–Rivlin material model: (a)
Undeformed configuration. (b) Deformed configuration colored by I1 := trC. (c) Displacement
of the tip vs. the total applied force. (d) Speed-up of the DD shell model w.r.t. the NP shell
model.
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Figure 3: The cantilever bending test with isotropic Mooney–Rivlin material model: (a)
Displacement of the tip vs. the total applied force. (b) Deformed configuration colored by
I1 := trC.
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4.2 Clamped plate
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Figure 4: The clamped plate test with anisotropic Mooney–Rivlin material model: (a) Un-
deformed configuration (quarter system). The clamped edges and symmetric boundaries are
denoted by thick solid and dashed lines, respectively. (b) Deformed configuration colored by
I1 := trC (full system). (c) Displacement of the center point vs. the applied pressure. (c)
Enclosed volume of plate vs. the applied pressure.

This example is designed to investigate the cases that both bending and membrane forces are
dominant. Accordingly, a completely clamped square plate, with L×L×T = 10×10×0.1 [mm3],
is loaded by an external live pressure. As depicted in Fig. 4.a, only a quarter of plate is modeled
due to the symmetry of the problem. The rotation is fixed along the symmetry and clamped
boundaries according to the penalty formulation of Duong et al. (2016). The plate is meshed
by 4 × 4 quadratic NURBS-based elements as shown in Fig. 4.a. The plate constitution is
modeled by the incompressible anisotropic Mooney–Rivlin material model of Eq. (57). Now,
the laminates are not symmetric w.r.t. the shell mid-surface (see Table 2). The orientation of
fibers is defined by the angle γ measured w.r.t. the right symmetry edge (see Fig. 4.a). Here,
the analytical and numerical projection approaches are compared. For the NP shell model, 2
Gaussian quadrature points are considered for each laminate layer. As shown in Figs. 4.c and 4.d,
the results of AP and NP shell models are in excellent agreement.

Layer #i Ti [T ] c̃1 [kPa] c̃2 [kPa] c̃3j [kPa] γ [deg]

1 -0.35 20 60 200 ±15

2 0.10 15 30 75 ±30

3 0.20 30 30 60 ±45

4 0.40 25 50 125 ±60

5 0.50 10 20 100 ±75

Table 2: Material properties of the laminated composite plate.
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4.3 Pressurization of a tube

As shown in Fig. 5, a laminated composite tube, with L × R × T = 20 × 5 × 0.25 [mm3], is
pressurized by the live pressure pext. It is assumed that the tube is constructed from 5 layers
as listed in Table 2; however, here the fiber directions are measured w.r.t. the axial direction.
As the problem is symmetric, only 1/8 of tube is modeled (see Fig. 5.a) and the symmetry
boundary conditions are applied accordingly using the constraint of Duong et al. (2016). On
the tube end, three different boundary conditions are considered: (1) Free end, (2) closed end,
where the tensile traction pextR/2T is applied along the axial direction, and (3) fixed end,
where all the displacements are restricted. Furthermore, for the first two cases, the rotations
on the tube end are fixed by the constraint of Duong et al. (2016).
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Figure 5: The tube test with anisotropic Mooney–Rivlin material model: (a) Undeformed
configuration (quarter system). The symmetric boundaries are denoted by thick dashed lines.
Circumferential stretch λθ and axial stretch λz of the tube with (b) free end, (c) traction on
the end and (d) fixed end.

As shown in Figs. 5.b-d, the circumferential stretch λθ and axial stretch λz of the tube are
predicted identically by both the NP and AP shell models. The stretches λ• are calculated at
the middle point A shown in Fig. 5.a. The applied pressure is normalized by E = 3 c̃1. Further,
Fig. 6 shows the deformed tube for different boundary conditions. Using quadratic NURBS-
based shape functions, for all cases, an accurate solution is obtained by the coarse 2 × 2 mesh
shown in Fig. 5.a.

5 Conclusion

Three different approaches to model thin laminated composite shells based on the Kirchhoff–
Love hypothesis are presented, namely the numerically-projected (NP), analytically-projected
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(a)
(b)

(c)

(d)

Figure 6: The pressurized tube colored by I1 := trC (full system): (a) Undeformed configura-
tion and deformed configurations (pext = 0.83 E) for the tube with (b) free end, (c) traction on
the end and (d) fixed end.

(AP) and directly-decoupled (DD) shell models. The proposed models are suitable for thin
rotation-free shells and they are formulated in the framework of equivalent single layer (ESL)
theory. Further, the kinematics are adopted from classical laminated plate theory. Beside the
Kirchhoff–Love assumptions, it is assumed that: (1) the layers are perfectly bonded together,
(2) each layer is of uniform thickness, (3) the material can have any desired nonlinear isotropic
or anisotropic constitution and (4) the strains and deformations can be arbitrarily large.

The numerically-projected shell model is the most general one, which can be used to analyze
composite shells with any desired constitution and laminate arrangement. However, it generally
requires numerical integration through the shell thickness. In fact, for each individual laminate
layer, separate integration is needed, which can be computationally expensive. If the shell
thickness is considerably smaller than the other dimensions or curvature radii of the shell, the
analytically-projected shell model can be used, which is computationally more feasible as it
does not need any numerical through-the-thickness integration. For laminated composite shells
that have symmetric arrangement and material properties w.r.t. the shell mid-surface, one can
use the directly-decoupled shell model. This approach is the most efficient one; however, it is
restricted to symmetric shells.

The presented shell models can be used to analyze any arrangement and material behavior of
the layers. The FE solution is based on isogeometric analysis (IGA) and quadratic NURBS-
based elements are used to ensure the smoothness required for the analysis of thin shells. The
robustness and accuracy of the formulation is shown by several numerical examples, which
examine the mixed membrane and bending modes of deformation.

The current formulation assumes that the laminated layers are perfectly bonded. In the future,
one can also account for delamination and inter-layer contact. Further, the model can be
modified according to layer-wise and higher order shear deformation theories to analyze thicker
shells or plates.
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