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Abstract

Several biological and artificial hydrophobic surfaces exhibit self-cleaning mechanisms, which
ensure smooth sliding/rolling of liquid droplets, allowing them to sweep pollutant particles away
from the surface. While enhancing of the self-cleaning property is a major topic in numerous in-
dustrial applications, the underlying physics is not yet fully understood. The first step towards
analyzing this mechanism is studying the surface hydrophobicity, which is characterized by the
contact angle and surface topography. In this article, we investigate the wetting of hydrophobic
surfaces at three different length-scales, over a range of surface and droplet parameters. A
mathematical model describing multi-scale surface topographies is presented, using exponential
functions. The contact between liquid droplets and these surfaces is numerically studied using
a finite element (FE) droplet model. The introduced models are verified numerically and exper-
imentally. Numerical examples are shown for axisymmetric droplets of different size on surfaces
with various contact angles and various levels of surface roughness, representing different length-
scales. The corresponding wetted area is computed in order to evaluate the hydrophobicity of
the surface. Significant differences are observed in contact angles and wetted areas captured at
different length-scales. This highlights the importance of the multi-scale structure of hydropho-
bic surfaces on wetting. Furthermore, the presented work provides guidelines for the design of
artificial hydrophobic surfaces.

Keywords: self-cleaning mechanism, contact angle, static wetting, nonlinear finite element
analysis, droplet membranes, rough surface contact.

1 Introduction

Some surfaces such as the lotus leaf exhibit self-cleaning effects (also called lotus effects [3]),
when water droplets pass over it. The superhydrophobic nature of these surfaces [8] imposes
a large contact angle, and therefore minimum contact area, which forces water droplets to
form small semi-spherical shapes. This allows water droplets to roll-off the inclined surface
and sweep away pollutant particles. The hydrophobicity is highly influenced by the surface
topography [9, 14]. Therefore, manipulating surface morphology over different length-scales,
has significantly increased the industrial [17, 28, 19, 12] and research interest to this problem.
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While studying hydrophobicity of surfaces, it is quite common to consider a system of a liquid
droplet in contact with a substrate surface. The first fundamental equation that quantifies the
static contact angle of a liquid droplet on a solid flat surface was proposed by Young in 1805
[33]. However, he did not account for surface roughness captured at the microscopic scale.
Wenzel [31] extended the Young equation to account for surface roughness, and modeled a
droplet in intimate contact with a rough surface (non-composite state). Cassie and Baxter [9]
introduced the composite contact state, where air is trapped between the droplet and the rough
surface. They observed that the hydrophobicity of the surface is enhanced by increasing the
air-surface fraction. Surface properties which influence the wetting state were investigated by
Johnson and Dettre [14]. They argued that surfaces of higher roughness are more likely to be in
composite state. Kavousanakisa et al. [15] quantified the effect of geometric characteristics of
micro-structured solid surfaces on the wetting state, considering single-level roughness. Similar
study was performed by Raeesi et al. [21] for tubes of uniform cross-section. On the nano-
level, Lee et al. [16] observed that nano-protrusions decrease the contact area between a water
droplet and the surface, causing the contact angle to increase considerably, and thus enhance the
hydrophobicity. They observed that contact angles change considerably among different length-
scales of a multi-scale structured surface. Static and dynamic wetting on nano-topographical
surfaces were recently investigated by Ramiasa [22].

An experimental study of drops on inclined surfaces was performed by El-Sherbini et al. [10].
They investigated the geometry of drops on various surfaces, for different inclinations, contact
angles, contact lines, volumes, and surface conditions. Callies et al. [7] discuss the recent
advances in water repellency, and examine wetting of surfaces, experimentally. While some
experimental measurements of wetting areas on small scales are too difficult, or even impossible
[11], numerical treatment of the problem provides suitable solutions, especially for complex
surface geometries. One of the first numerical formulations for static droplets in contact with
flat surfaces was introduced in 1980 by Brown et al. [6, 5]. They computed the membrane shape
of a droplet resting on flat surfaces, by solving the Young-Laplace equation, based on the finite
element method (FEM). For more general representation of membrane surfaces, differential
geometry based formulations were introduced by Steigmann et al. [29], Agrawal and Steigmann
[2, 1], and Sauer et. al [27].

Hydrophobicity is influenced by several factors such as surface energy, electro-magneticity [25],
surface chemistry [30], surfactants [18], surface topography, contact angle, and droplet size. In
this work, we focus on the last three, which are structural aspects, and show how surface and
droplet parameters affect the hydrophobicity of surfaces, considering its multi-scale structure.
This study serves as the first step to understand self-cleaning mechanisms. We model a static
system of a liquid droplet in contact with a rigid substrate surface of three different topographies;
flat, single-roughness and two-level-roughness (double-roughness) surfaces. These can be also
seen as different resolutions of the same physical surface. The hydrophobicity is evaluated
through two parameters: the contact angle and the contact area (wetted area). Due to the local
deformation of the droplet membrane at the region of contact with rough surfaces, local and
global contact angles are distinguished, depending on the scale at which they are measured. We
use the term apparent for global contact angles captured at larger length-scales (e.g. macro-
scale) where the rigid surface appears flat, while the term true is used for local contact angles
captured locally at the individual asperities of the rigid surface, at high resolutions (similar
definition used in [15]). Similarly, we distinguish apparent and true contact areas to describe
global and local surface wetting. Based on a developed FE model, we compute the evaluation
variables: the apparent contact angle and the true wetting area, for given droplet and surface
parameters, which are discussed in Section 4. We investigate superhydrophobic surfaces with
true contact angles in the range 140◦ ≤ θtr ≤ 180◦. Droplets are considered thermodynamically

2



stable with zero hysteresis, so only the Young-equilibrium contact angle appears.

2 Numerical model

In this section, we present the governing equations describing the two models; liquid droplet
model and the rigid surface model. The implementation of the first model using the FEM is
discussed in detail by Sauer et al. [27] and Sauer [26]. We use the stabilization scheme for liquid
membranes, introduced in [27], with a stabilization parameter µ = 0.01.

2.1 Droplet model

The liquid droplet can be modeled as a structural membrane whose deformation is governed
by the Young-Laplace equation, and an internal liquid flow governed by the Stokes equation.
Different approaches can be used to solve the two problems. A simple approach is solving the
two problems in a decoupled manner, where each problem is solved separately [24, 23, 20]. In
this article, we consider quasi-static droplets, where no internal flow takes place.

The difference between the internal and the external pressure 4p on the membrane interface
Sd is balanced by the mean surface curvature 2H, through the Young-Laplace equation,

2HγLG = 4p [N/m2], (1)

where γ is the surface tension at the liquid-gas interface. The pressure difference across the
interface can be expressed as

4p = pf − pc, pf = p0 + ρgy, (2)

where pf is the fluid bulk pressure comprising the capillary pressure p0 and the hydrostatic
pressure in terms of the liquid density ρ, gravity g and the surface height y. A contact pressure
pc appears where contact between the membrane and other surfaces take place. Since it is
more convenient in computations to use normalized quantities, we multiply Eq.(1) by L/γLG to
obtain the dimensionless quantities marked with tilde,

2H̃ = p̃f − p̃c [−], (3)

p̃f = λ+B0 ỹ, B0 =
ρgL2

γLG
, (4)

where λ is the Lagrange multiplier accounting for the capillary pressure, B0 is the so called
Bond number, and L is a characteristic length, which can be related to the droplet diameter, if
it is spherical, or the droplet width otherwise.

2.2 Rigid surface model

Multi-scale surfaces involve multi-level roughness. While a hydrophobic surface is observed
to be flat on the macro-scale level, roughness is captured at the meso-scale level, and multi-
level roughness at finer length-scales. The mathematical modeling of the substrate surface at
three different topographies is presented in this section. These are: flat, single-roughness, and
double-roughness topographies (Fig.1), which can be interpreted as three different length-scales.
While most authors use simple sinusoidal functions for representation of roughness [4, 13], we
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use super-imposed exponential functions, which provide more flexibility in surface description,
and better approximation of the real topography. This is because more parameters are used to
describe exponential functions. A point xm on the surface is defined through the relation,

xm = y1n0 + y2n1, (5)

where n0 and n1 are the normals w.r.t surfaces S0 (the flat horizontal surface) and S1, respec-
tively (see Fig.1). The following set of equations describe surfaces of up to two-level roughness,

y1(x1) =

np1∑
j=1

A1 exp
(
− (x1 − j4x1)2

h21

)
, (6)

y2(s) =

np2∑
j=1

A2 exp
(
− (s− j4x2)2

h22

)
, (7)

s =

∫
S1

√
1 +

(∂y1
∂x1

)2
dx1. (8)

The exponential function y1 describes the first level of roughness on surface S1, while y2 describes
the roughness on the second level (surface S2). The latter is defined in Eq.(7) in terms of the
arc length s, measured on surface S1. Ai and hi are the amplitude and asperity width of the
corresponding surface Si, respectively, for i = 1, 2. A summation over the number of asperities
on the corresponding surfaces np1 and np1 is taken, considering 4x1 and 4x2, which define the
spacing between asperities on S1 and S2, respectively. Setting A2 = 0 yields a single-roughness
surface described only by y1, while setting both A1 = A2 = 0 yields a flat surface. The width of
the asperities on each level is related to a characteristic length L through the relations h1 = f1L
and h2 = f2L, where f1&f2 < 1 are factors which determine the two length-scales of surface S1
and S2, respectively.

In order to describe the roughness, we define the dimensionless surface roughness factor,

Cri = Ai/hi, (9)

which is the ratio of the asperity amplitude to its width on the corresponding surface i. A flat
surface would correspond to Cr1 = 0, while a single-level rough surface correspond to Cr2 = 0.
Furthermore, in this work we fix the distance between each two consequent asperities to three
times their width, 4xi = 3hi for i = 1, 2. We emphasize here that both 4xi and hi are fixed
parameters defined in terms of the characteristic length L. In spite of being captured at different
length-scales, the two surfaces might have the same roughness factor. Therefore the length-scale
is distinguished through the variable hi and not Cri .

Figure 1: Parameterization of the multi-scale surface.
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After defining the droplet and substrate surface models, the numerical treatment of contact is
introduced. In order to compute the contact pressure pc between the droplet membrane surface
Sd and the substrate surface Si (Eq.(2)), the normal gap gn between both surfaces must be
computed. For that, each point on the droplet surface is projected normally onto the substrate
surface. The impenetrability constraint then reads,

gn = (xs − xp) · np ≥ 0, ∀xs ∈ Sd, (10)

where xp is the closest projection of the membrane point xs onto the substrate surface Si
in the direction np, normal to Si. Several numerical approaches are introduced by Wriggers
[32] to enforce the contact constraint in Eq.(10). While the computation of gn and its spatial
derivatives on a flat surface is straight forward, it is challenging in the case of curved surfaces,
since the surface normal varies w.r.t xs. An iterative solution is therefore necessary to compute
all possible projection points xm, satisfying the orthogonality condition,

am · (xs − xm) = 0, (11)

where am is the surface tangent on Si at xm. Generally, several projection solutions for xs

could exist, and therefore a minimum distance problem has to be solved to obtain the closest
projection point xp,

xp(xs) = min
∀xm∈Si

(xs − xm), ∀xs ∈ Sd. (12)

In the case of a double-roughness surface, the point xp on S2 is computed in terms of the arc
length s corresponding to the point x1 on S1, which is the projection of xp on S1.

The three-phase boundary (contact line) changes as the contact area varies, depending on the
surface roughness. While most of the literature treat the contact line as a predefined boundary
given by Dirichlet boundary conditions, we treat it as an internal interface defined through a
force balance based on Young-Dupré equation, where the position is a-priori unknown. The
force balance in the tangential and normal directions, respectively, can be written as

γSG − γLG cos θc − γSL = 0, (13)

qn − γLG sin θc = 0, (14)

where θc is the contact angle measured inside the liquid between the solid and the liquid in-
terfaces, while γSG and γSL denote the surface tension at the solid-gas and the solid-liquid
interfaces, respectively. qn is the force which counterbalances the normal component of the
surface tension γLG. Details on the numerical implementation of the contact line can be found
in [20] and [26].

3 Model validation

The droplet model is validated experimentally. A convergence study to verify the numerical
solution is also provided.

3.1 Validation against experiments

The numerical solution is validated against the experimental solution obtained by Callies et
al. [7], and plotted in Fig.2, which depicts an image of an axisymmetric water droplet of given
volume V , resting on a flat (observed at the macro-scale) rigid superhydrophobic surface with
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Numerical solution

Figure 2: Numerical solution against the experimental solution of Callies et al. [7], for an
axisymmetric droplet, V ≈ 0.52 µl, θc ≈ 180◦. [Adopted with permission from Royal Society of
Chemistry, Soft matter, RF14].

(θc ≈ 180◦). Droplet parameters are: surface tension γ = 0.0728 N/m, temperature 20◦C, and
density of water ρ = 998.2 kg/m3. The corresponding numerical quantities are Bond number
B0 = 0.1363, and the characteristic length L = 1mm.

Fig.2 shows good agreement of the numerical solution with experiments for the case of contact on
flat surfaces. Furthermore, the experimental solution of Zhang et al. [34] has been considered,
and also gave an equally good agreement. Numerical solutions for contact on rough surfaces
are verified only numerically in the following subsection.

3.2 Convergence of the numerical solution

Since no analytical solution for a deformed droplet under gravity exists, we study the conver-
gence of the numerical solution based on the relative error computed at each mesh density. This
error is defined as the relative difference in the true contact area computed at two consequent
mesh densities Ah

i+1 and Ah
i ,

4Ah
true =

Ah
i+1 −Ah

i

Ah
i

, (15)

which converges to zero as the number of elements nel goes to infinity (element size goes to
zero), as shown in Fig.3. For a very coarse mesh, the error in the true contact area of both flat
and rough surfaces is almost identical. This is because the mesh is too course to capture the
curved rough surface. Quadratic Lagrange two-dimensional finite elements are used in these
computations.

4 Results and discussion

The introduced numerical model can predict the static wetting state on hydrophobic surfaces,
based on predefined surface roughness and droplet parameters. Whether it is a Wenzel or
Cassie-Baxter wetting state, is therefore a result and not an assumption. As often adopted in
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Figure 3: Convergence of the true contact area of a droplet resting on a rigid surface (flat and
rough), for θc = 180◦.

the literature for quasi-static modeling, axisymmetric droplets are considered in this section, so
that the 3-D case can be reduced to a simple 2-D model. In fabrication of artificial hydrophobic
surfaces, the hydrophobicity is enhanced by minimizing the true contact area, therefore allowing
smoother sliding/rolling motion of a droplet on the surface. This minimization can be achieved
by: (1) increasing the surface roughness, which results in more air gaps between the droplet
and the substrate surface, (2) maximizing the contact angle, and (3) minimizing the droplet
size, through chemical or electrical treatments. In order to find local and global minima, an
optimization study is necessary, based on predefined constraints. Such a study is not addressed
in this article. In this section, we study the effect of these three parameters on: (1) the difference
between the true and apparent contact angles (θtr−θap), and (2) the ratio of the true to apparent
contact area (Atr/Aap). The latter can be seen as a quantification of the composite wetting
state introduced by Cassie and Baxter [9]. Alternative to Atr/Aap, the surface roughness effect
can be studied through the ratio of the true contact area (Atr) to the total surface area of the
droplet (AT ) defined as the sum of the true contact area and the free surface area Af , shown
in Fig.4.

While the true contact area Atr and true contact angle θtr are usually captured at scales smaller
than or equal to the micro-scale, where surface roughness appears, the apparent contact area
Aap and apparent contact angle θap are observed at the macro-scale, where the surface appears
flat (see Figs.4 and 5). The dotted line in Fig.5, representing the apparent surface, is chosen
to be tangent to the peak of the asperity. θtr is defined locally at each asperity as the angle
between the surface tangents of both the asperity and the droplet surface, at the contact line.
This definition is also valid for surfaces with second-level roughness. We note that considering
a perfect flat surface, we have θtr = θap = θc.
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Figure 4: Schematic of true contact area Atr, apparent contact area Aap, and free surface area
of the droplet Af .

Figure 5: True contact angle θtr and apparent contact angle θap.

4.1 Surface parameters

We investigate the effect of the surface roughness factor Cri and the true contact angle θtr on the
hydrophobicity. Computations are done for a defined range of contact angles 140◦ ≤ θtr ≤ 180◦,
for a fixed droplet volume V , and fixed spacing between asperities 4xi = 3hi, for i = 1, 2.
Adaptive finite element meshes are used in the computations, in order to provide finer mesh size
in the region of contact and coarser in the region of free surface. The surface roughness factor is
chosen in the range 0 ≤ Cri ≤ 2, which covers a reasonable range of surface profiles representing
roughness at the length-scales under consideration. Fig.6 shows a droplet with a fixed volume
V = πL3 in contact with rigid flat and rough surfaces at three different contact angles. On a
flat surface, a decrease in the contact angle from 180◦ to 140◦ results in a considerable increase
in the true contact area (almost four times). In other words, at θtr = 140◦, Atr is 25% of
AT ( Fig.6a). This percentage drops to 5.5% in the case of contact with a rough surface of
roughness factor Cr1 = 0.9 (Fig.6b). For computations of contact with flat surfaces in Fig.6, we
use 200 quadratic Lagrange finite elements, while for the case of contact with rough surfaces,
2000 quadratic finite elements are used at the contact region.

Fig.7 illustrates the single-level roughness effect on the wetting area. As seen, the ratio Atr/Aap

decreases as the surface roughness Cr1 increases. Furthermore, curves in Fig.7 have higher
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(a)

(b)

θtr = 180◦ θtr = 160◦ θtr = 140◦

Figure 6: FE solutions for a droplet of volume V = πL3, in contact with: a) flat and b)
rough surface with Cr1 = 0.9. True contact angles for both surfaces ={180◦, 160◦, 140◦}.
The ratio of true to total contact area (left to right): (a) Atr/AT={6.1, 15.3, 25}% , (b)
Atr/AT ={0.9, 2.5, 5.5}%.

slopes at regions with small roughness factors (Cr1 < 0.4), and lower slopes at higher roughness
factors. This is because the increase of Cr1 in the first region correspond to the transition
from the non-composite (Wenzel) to the composite contact state (Cassie-Baxter), where the
variation in the wetting area (Atr/Aap) is considerably higher than that in the second region
where contact is already in a composite state. In the latter state, the droplet is pinned on the
asperities of the rough surface. Therefore, with 4x1 being fixed, further increase in Cr1 would
correspond to elevating the droplet, with negligible change in the wetting area. The transition
from the Wenzel wetting state (W) to Cassie-Baxter (C-B) state is marked in Fig.7 by the blue
lines. This transition occurs at different Cr1 as the contact angle changes.

Figure 7: Ratio of true to apparent contact area over surface roughness factor Cr1 = A1/h1,
V = 2πL3, for a single-roughness surface (Cr2 = 0).

For a fixed contact angle θtr = 180◦, considering an additional level of roughness, parameterized
by the factor Cr2 , results in a further decrease in the true contact area, as shown in Fig.8. The
roughness factor Cr2 here is expressed in terms of Cr1 only for simplification, however arbitrary
values can also be assigned to the model.
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Figure 8: Effect of double-level of roughness on the true to apparent contact area ratio, for
V = 2πL3, at a fixed contact angle θtr = 180◦.

The second criteria for evaluating the hydrophobicity is the contact angle. For the same droplet
volume, larger contact angles result in smaller contact areas (less wetting), as in Fig.7, and
smaller differences between the apparent and the true contact angle, as in Fig.9. In analogy to
the effect of roughness on the wetting area, the difference (θtr − θap) increases with a higher
slope in the transition region (Cr1<0.4), compared to the region where contact is already in
composite state (Cr1>0.4).

Fig.10 shows that larger differences between the true and apparent contact angles are observed
when a second level of roughness is considered, at a fixed θtr = 180◦.

Figure 9: Effect of single-roughness on the true contact angle, V = 2πL3, for various θtr.
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Figure 10: Effect of double-level of roughness on the true to apparent contact angle ratio,
V = 2πL3, at θtr = 180◦.

4.2 Droplet size

Small droplets of small size have larger surface curvature, and therefore higher capillary pressure,
compared to larger droplets. This limits the deformation of a small droplet, as it preserves a
semi-spherical shape with a minimum area of contact (see Fig.11). We use the expression size
for the volume of an axisymmetric droplet, which is initially a sphere. In 2D, this volume
correspond to an area of a circle.

Now, we study the effect of variation of size (i.e volume of an axisymmetric droplet) on the ratio
of true contact area to the total droplet area Atr/AT , at contact angle θtr = 180◦, for single-
roughness and flat surfaces. As observed in Fig.12, a linear relationship between the volume
and the contact area is obtained for all surfaces, in the defined range of surface roughness and
droplet volume. The wetted area increases with the volume at lower slopes for higher surface
roughness.

a) b)

Figure 11: Effect of droplet size on the area of contact with (a) flat surface, Cr1 = 0 and (b)
rough surface, Cr1 = 1.
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Figure 12: Effect of droplet size on the true to total contact area at different surface roughness
factors Cr1 , for θtr = 180◦ and Cr2 = 0.

4.3 Multi-scale representation of hydrophobic surfaces

A multi-scale view of wetting on hydrophobic surfaces is depicted in Fig.13, based on the general
surface model discussed in Section 2.2. At smaller scales, where finer asperities are captured
on the rough surface, smaller contact area and more air gaps are observed, compared to larger
scales. Furthermore, local wetting regions are observed on the single asperities, which differ from
the global wetting region observed at larger scales. Therefore considering the multi-scale nature
of hydrophobic surfaces provides a realistic modeling of wetting states. The wetting behaviour
is highly influenced by the surface and droplet parameters described in previous sections.

a) b) c)

Figure 13: FE results for a droplet in contact with a super-hydrophobic surface at different
length-scales [20], with contact angle θtr = 180◦.
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5 Summary and Conclusion

Based on finite element computations, we perform a study on a range of surface and droplet
parameters for which the hydrophobicity of rough surfaces is enhanced. This enhancement
is mainly achieved by minimization of the wetting area, through manipulating the surface
topography, contact angle and the droplet size. The effect of these three parameters on the
wetted area is studied.

Three types of surfaces are considered here; flat, single- and double-roughness surface, repre-
senting three length-scales: macro-, meso- and micro-scale, respectively. These surfaces are
mathematically modeled using super-positioned exponential functions, and parameterized by a
surface roughness factor Cr, and a length-scale L. The spacing between asperities is fixed to
three times the length-scale. Further study of the effect of this parameter on wetting can be
considered in the future. Results show significant changes in the wetted area, as the surface
topography changes across different length-scales. Furthermore, true contact angles captured
locally at small scales are more precise than the global contact angle measured at a large scale,
where the surface appears flat. These conclusions agree with the physical observations of Cassie
and Baxter [9], and Lee et al. [16] on the behavior of wetting on rough surfaces. Based on these
conclusions, we highlight the importance of considering the surface roughness observed at small
length scales while modeling wetting of hydrophobic surfaces. The provided study is specially
useful for manufacturing and design of artificial hydrophobic surfaces. Only static wetting is
considered in this study. Including inertial effects will result in a different wetting behavior,
and therefore different surface design.
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