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Abstract: This paper presents computational shape optimization of adhesive microstructures.
Adhesion is described by van der Waals interactions. These are incorporated into a nonlinear,
geometrically exact beam formulation. The cross section of the beam is considered to vary
along the beam length. The resulting shape variations are then used for optimization, by
maximizing the contact surface of the beam, maximizing the external work during peeling, and
minimizing the strain energy. A nonlinear finite element formulation is used to discretize and
solve the resulting system. Optimization is then based on a genetic algorithm. Apart from
the actual optimization procedure, this work also focuses on the problem formulation and the
corresponding choice of problem parameters. In order to explore the properties of the design
space, a large number of benchmark cases is examined. The optimization parameters of the
model are investigated and several design guidelines are drawn. It is shown that, depending on
the chosen model parameters, the computed optimal beam shape resembles the shape of gecko
spatulae.

Keywords: shape optimization, peeling strips, gecko adhesion, computational contact mechan-
ics, geometrically exact beam theory, nonlinear finite element methods

List of important symbols

A cross section area
As effective shear area
Ac contact area
AH Hamaker constant for van der Waals adhesion
cc weighting factor for contact term in objective function
cp weighting factor for peeling term in objective function
E Young’s modulus
G shear modulus
H beam height / thickness
Hmin admissible minimum beam height
Hmax admissible maximum beam height
H ′′max maximum for second derivative of H w.r.t. S
I second moment of area
L beam length
L0 unit length used for normalization
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Lc contact length / length of adhesive part
Mc contact moment due to van der Waals adhesion
Ntotal population size for the genetic algorithm
Nchild number of children per generation
Nnew number of new random geometries per generation
Nmut number of mutations per generation
ν Poisson’s ratio
P reaction force due to imposed displacement
Π potential energy

Π normalized potential energy
Ψ objective function
r0 molecular equilibrium distance of the Lennard-Jones potential
S beam axis coordinate
T c contact traction due to van der Waals adhesion
u vertical displacement imposed at the left boundary
V beam volume
Vmax admissible maximum volume
W beam width
Wmin admissible minimum beam width
Wmax admissible maximum beam width
W ′′max maximum for second derivative of W w.r.t. S

1 Introduction

Thin adhesive films play an essential role for both natural and technical applications: These
include the adhesion mechanism of insects and lizards, and the fabrication of bio-inspired ad-
hesives. The knowledge of how the adhesion and detachment behavior of peeling strips can be
modified, facilitates designing artificial materials with strongly adhesive surfaces. This moti-
vates us investigating how the adhesion properties of a thin strip can be improved by optimizing
its shape.

The geometry-dependent peeling behavior of adhesive microstructures has been subject of var-
ious studies: Autumn et al. (2002) have stated that the strength of adhesion of gecko setae3 is
strongly influenced by their surface geometry. An analytical approach has been considered in
order to maximize the peeling force of cylindrical adhesive fibrils (Gao et al., 2005; Gao and Yao,
2004). Subsequently, Yao and Gao (2006) have developed a more general model for the optimal
shape of two adhering elastic surfaces. Additional studies propose both scaling guidelines for
different shapes of fibril tips (Spolenak et al., 2005b), and “adhesion design maps” (Spolenak
et al., 2005a; Greiner et al., 2009); those maps relate the desired contact strength to geometri-
cal and material properties. Nevertheless, analytical models are restricted to simple geometric
shapes; they further cannot account for large deformations during peeling.

Apart from analytical studies, the dependence of the adhesion strength on the fibril geometry
has been investigated in various experimental (Gorb et al., 2007; del Campo et al., 2007; Greiner
et al., 2007), theoretical (Carbone et al., 2011), as well as in numerical studies (Peng et al.,
2010; Pantano et al., 2011; Zhang et al., 2011; Carbone and Pierro, 2012; Peng and Chen, 2012;
Afferrante and Carbone, 2012). The latter, however, do not account for shape optimization by
means of an optimization method.

3Gecko toes are covered with smooth hairs (setae) that split up into fine tips (spatulae).
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Using topology optimization, Sylves et al. (2009) have designed thin adhesives that show a
desired force-displacement relation during peeling. This study includes both the delamination of
beams and of thin plates. Nevertheless, since the proposed method is limited to to geometrically
linear problems, this approach is not applicable to large deformations as they may occur for
thin adhesive fibrils.

The shape design of beams has been investigated by Gams et al. (2010), considering flexible and
dynamic frame structures under large rotations. The study discusses a gradient-based approach
to determine the optimal width and thickness of a load-moving robot arm. The structure is
modeled by using a geometrically exact beam theory; the model therefore accounts for large
deformations. Nevertheless, the work of Gams et al. (2010) is neither related to adhesion-
dominated nor to general contact problems.

(a) Beam geometry (b) Initial configuration

Figure 1: Setup of the thin adhesive strip; the peeling force is applied at the left boundary

Our aim is to design the shape of flexible peeling strips undergoing large displacements and
rotations. For this purpose, we investigate how a thin strip should be shaped in order to
(1) adhere strongly to the substrate, and (2) minimize large strains, which can cause either
material damage or plastic deformation. In the present study, we consider a strip with an
elongated, beam-like structure. Its rectangular cross section varies in both the height, H(S),
and width, W (S), along the beam axis, S ∈ [0, L] (Fig. 1(a)). In the initial configuration, the
lower strip surface is fully attached to a planar, rigid substrate (Fig. 1(b)); the beam axis is
thus initially curved.4 In the interval between the points Pc and Ptip (S ∈ [L−Lc, L]), the strip
is adhering to the substrate by van der Waals forces. The left boundary of the strip is pulled
upward by prescribing a vertical displacement at the point Ppeel.

The modeling and computation of the detachment process is done with the 2D finite beam
element formulation of Sauer and Mergel (2014) for thin film peeling. This formulation is based
on the geometrically nonlinear beam theory of Reissner (1972). Our study is motivated by the
understanding of shape optimization of adhesive strips. In this preliminary investigation, we
focus on identifying and discussing both objectives and additionally required constraints. For
optimization, we use a genetic (stochastic) algorithm; this facilitates exploring the non-convex
design space discussed here. Importantly, the large deformation analysis considered for the peel-
off computation may not converge for various intermediate designs. For those cases, gradient
computation may not be possible, which would make classical, gradient-based optimization
approaches stall. Considering a stochastic method, we can circumvent such cases by artificially
penalizing any non-convergent designs. We intend to reformulate the design problem, facilitating
the use of gradient-based approaches, in the future.

The remaining sections of this paper are structured as follows: Section 2 first summarizes the

4Note that the strip geometry is generated by using a straight beam axis, see Fig. 1(a).
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beam model equations and defines the considered optimization problem. The governing equa-
tions are then discretized within a finite element framework. Section 3 discusses the applied
optimization method. In Section 4, the peeling behavior of differently shaped benchmark ge-
ometries is studied. The presented optimization method is used to study optimal shapes for
different criteria and constraints. Section 5 finally concludes this paper.

2 Model equations

In this section, we present the continuum mechanical equations that are used to model the
peeling of a thin strip from a flat rigid substrate. Afterwards, we discuss suitable optimization
criteria and provide additional constraints on the strip geometry. We then summarize the
discretized equations that are used to solve the problem numerically.

2.1 Mechanical equations

The peeling strip that we are considering here has a thin and elongated geometry. We thus
model it as a beam, using the beam adhesion formulation of Sauer and Mergel (2014). This
model is based on the geometrically exact beam theory of Reissner (1972), see also Wriggers
(2008). According to this theory, the beam’s cross sections remain planar, but not necessarily
perpendicular to the axis. It can thus account for finite strain, bending, and shearing within the
beam. In the following, we consider the full detachment process as quasi-static. The external
work provided to peel the strip from the substrate is either transformed into internal energy
or into the contact energy that is required to separate the two bodies (Sauer, 2011). The
incremental form of the work balance is thus given by

dΠext = dΠint + dΠc. (1)

As depicted in Fig. 1(b), the strip is lifted by the vertical displacement, u, prescribed at the
left boundary, Ppeel; this results in a reaction force, P . Thereby, the externally applied energy
changes by

dΠext = P (u) du. (2)

Considering linear elastic material behavior, the internally stored energy is given by

dΠint =

∫
L

dεTDε dS, (3)

where the vector ε is composed of the axial, shear, and bending strains (Sauer and Mergel,
2014). The material tensor, D = diag

(
EA,GAs, EI

)
, contains Young’s modulus, E, and the

shear modulus, G. Considering a rectangular strip cross section, the area, A, the shear area,
As, and the second moment of area, I, are obtained by A = HW , As = 5/6A, and I =
1/12H3W (Sauer and Mergel, 2014).

For a beam, the total contact energy can be stated as (Sauer and Mergel, 2014)

dΠc = −
∫
Lc

ddT

[
T c

Mc

]
dS, (4)

where the vector d contains the X− and Y−displacements of the beam axis as well as the
rotation, ψ, of the cross section. The distributed contact force, T c, and contact moment,
Mc, are modeled by using the body force formulation of Sauer and Mergel (2014). Since the
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considered peeling direction is perpendicular to the substrate, any tangential forces (e.g. due
to friction) would hardly affect the peeling behavior of the strip; this has been investigated by
Sauer and Holl (2013) and Sauer and Mergel (2014). We therefore consider contact between
the strip and the substrate as frictionless.

For the sake of simplicity, we assume that the beam thickness, H, is small compared to the
bending radius during film peeling. In this case, the contact moment is negligible (Sauer, 2011);
Mc ≈ 0.5 For van der Waals interaction, the contact line force, T c can be determined by (Sauer
and Mergel, 2014),

T c =
T (r1)

cosψ
ns, T (r) =

AHW

2πr30

[
1

45

(r0
r

)9
− 1

3

(r0
r

)3]
, (5)

where ns is the normal vector of the substrate, and r1 is the distance between the lower strip
surface and the substrate.6 The term T (r) is obtained by considering the Lennard-Jones po-
tential, which is discussed e.g. in the book by Israelachvili (2011). Here, AH is the Hamaker
constant (Israelachvili, 2011), and r0 is the molecular equilibrium distance of the potential.

2.2 Shape optimization

Regarding the requirement of strong adhesion, (1) the contact energy and (2) the externally
applied work – both measured for full separation – are appropriate objectives for maximization.
Those are

Π∞ext = Πext(u∞), Π∞c = w∞adhAc, (6)

where u∞ is the displacement for full detachment, Ac is the total contact area, and w∞adh is the
work of adhesion for full separation (Sauer, 2011),

Ac =

∫
Lc

W dS, w∞adh =
3
√

15
AH

16πr20
. (7)

Further, the minimization of the internal energy at detachment is suitable to prevent large
strains. If we reconsider the balance of work (1), we can observe a dependence of the three energy
terms. We do not know, however, when the beam deforms most strongly during detachment.
For this reason, we consider the maximum of the internal energy during the detachment process,

Πmax
int = max

u∈[0,u∞]
Πint. (8)

Our objective function Ψ that is minimized thus consists of three different terms, which can be
weighted by two parameters. We arrive at the following problem statement:

Problem statement

Find H(S) and W (S) such that

Ψ =
cp

Π
∞
ext

+ Π
max
int +

cc

Π
∞
c

(9)

is minimized subject to the constraints discussed in Section 2.3.

5The error caused by this simplification is supposed to be negligible to those that arise from the model
assumption of thin and elongated structures.

6Eq. (5) holds if H is larger than a few nanometers (Sauer, 2011; Sauer and Mergel, 2014).
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Here, the quantities Π• denote the normalized7 expressions of the total peeling energy, Π∞ext,
the peak internal energy, Πmax

int , (also denoted as deformation energy), and the total contact
energy, Π∞c . The factors cp, cc ≥ 0 are introduced to weight the different criteria.

Although the optimized quantities in Eq. (9) are physically justified, the problem can be stated
differently by choosing alternative objectives. One could, for instance, minimize only the strain,
||ε||, instead of the peak internal energy. Note that since the weightings cp and cc are constants
here, Eq. (9) is a single-objective problem. Nevertheless, regarding further studies following
this preliminary investigation, the consideration of multi-objective problems will be promising.

2.3 Design constraints

The peeling strip problem (9) has to fulfill additional conditions, which are specified in the
following:

(i) Beam volume

The strip must not exceed the maximum volume, Vmax,

V ≤ Vmax, V =

∫
L
HW dS. (10)

(ii) Box constraint

The height and width must lie within prescribed intervals. This condition is also referred
to as box constraint, see e.g. Christensen and Klarbring (2009),

H(S) ∈ [Hmin, Hmax], W (S) ∈ [Wmin,Wmax], S ∈ [0, L]. (11)

When choosing the interval limits, we are aware that the height, width, and volume are
correlated.8

(iii) Second derivatives of height and width

Since the film surface should be sufficiently smooth, we restrict the second derivatives of
H and W w.r.t. S,

|H ′′(S)| ≤ H ′′max, |W ′′(S)| ≤W ′′max, S ∈ [0, L]. (12)

(iv) Quasi-static behavior

The strip must satisfy the quasi-static equilibrium condition (1) during peeling.

Note that constraints (i) – (iii), concerning the beam geometry itself, can be enforced a priori
without peeling simulation. Constraint (iv) involves the computation of the peeling process;
therefore, it must be verified a posteriori.

7We use 1/
(
EL3

0

)
for normalization here, where E is Young’s modulus and L0 is a unit length.

8To ensure that the geometry can admit the limits, condition HminWmin ≤ Vmax/L ≤ HmaxWmax must be
fulfilled.
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2.4 Numerical description

The equations discussed in the previous section are now discretized within a finite element (FE)
framework. This procedure is only outlined here; we refer to (Sauer and Mergel, 2014) for a
more detailed description. To enhance both accuracy and efficiency, we consider independent
meshes for (1) the optimization problem (indicated with superscript ‘opt’), and (2) the solution
of the discretized FE beam equations (indicated with ‘h’). We use in both meshes linear shape
functions, which are denoted in the following as Nopt

e = Nh
e = Ne.

9 The mesh elements have a
constant length, respectively Lh and Lopt, where Lopt is a multiple of Lh (Fig. 2).

Figure 2: Interpolation of the finite element and optimization meshes; for integration, the
element domains are mapped onto the reference domain, ξ ∈ [−1, 1]

The cross-sectional properties,
(
Hh

e ,W
h
e

)
for finite element Ωh

e and
(
Hopt

e ,W opt
e

)
for optimiza-

tion element Ωopt
e , are then approximated by

H•e = Ne H•e and W •e = Ne W•
e, • = h, opt, (13)

where H•e and W•
e are the nodal quantities of element Ω•e, e = 1, . . . , n•el.

2.4.1 FE equilibrium equation

During peeling, the beam must fulfill the FE equilibrium equation

fhint + fhc − fhext = 0, (14)

where both the internal force, fhint, and the contact force, fhc , are specified in (Sauer and Mergel,
2014). We enforce strip peeling by applying a Dirichlet boundary condition; at each load step,
the displacement of the left boundary, uh, increases by the constant value, ∆u. Eq. (14) is
linearized using Newton’s method.

2.4.2 Discretized optimization problem

The discretized form of the optimization problem (9) is stated as:

min
Hopt

I ,W opt
I

Ψh subject to the constraints in Sect. 2.4.3, (15)

where Ψh is given by

Ψh =
cp(

Π
∞
ext

)h +
(
Π

max
int

)h
+

cc(
Π
∞
c

)h . (16)

9The shape function Ne is evaluated in the reference domain, ξ ∈ [−1, 1], by Ne(ξ) = [(1− ξ)/2, (1 + ξ)/2].
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Here, Hopt
I and W opt

I respectively denote the height and width of node I = 1, . . . , noptno . The

discretized peeling energy, (Π∞ext)
h, is computed by integrating Eq. (2). For the remaining two

quantities, we find

(Πmax
int )h = max

uh
(Πint)

h, (Πint)
h =

nh
el∑

e=1

[
1

2

∫
Le

εTe Dh εe dS

]
(17)

and

(Π∞c )h = w∞adh ·
nh
ce∑

e=1

[∫
Le

W h dS

]
, (18)

where nhce is the number of finite elements discretizing the adhesive part, S ∈ [L−Lc, L].

2.4.3 Discretized optimization constraints

The discretized optimization constraints show a form very similar to the continuum equations
in Section 2.3:

(i) Beam volume

V opt ≤ Vmax, V opt =

nopt
el∑

e=1

[∫
Le

HoptW opt dS

]
. (19)

(ii) Box constraint

Hopt
I ∈ [Hmin, Hmax], W opt

I ∈ [Wmin,Wmax], I = 1, . . . , noptno . (20)

(iii) Second derivatives of height and width∣∣∣F opt
I+1 − 2F opt

I + F opt
I−1

∣∣∣(
Lopt

)2 ≤ F ′′max, F = H, W, I = 2, . . . , noptno −1. (21)

(iv) Quasi-static behavior

Static equilibrium (14) must be fulfilled at each load step.

3 Optimization method

This section discusses the optimization method applied in the present study. Within this work,
we predominantly focus on the problem formulation instead of the optimization procedure itself,
which justifies the application of a stochastic optimization method. In the present case, we
consider a genetic algorithm (GA). With a stochastic approach like the GA, we can conveniently
eliminate non-convergent strip designs by penalizing structures that do not fulfill the quasi-static
peeling behavior.

Tab. 1 shows the schematic of the algorithm implemented here. First, an initial population
is generated; this population must fulfill constraints (i) – (iii) from Section 2.4.3. For each
generation, the best-ranked geometries are combined into child geometries; these geometries
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may slightly mutate from their parents. In addition, a small percentage of each generation can
mutate itself. The worst-rated geometries are eliminated and replaced by randomly generated
geometries.

In the following, the objective function, Ψ, is also referred to as cost function. We further
consider the design variables of the beam (i.e. the nodal values for the height and width) as
a genetic string with a certain cost, Ψ. The algorithm is tested for validation on a trivial

Initial population (i = 1, . . . , Ntotal)

1. generate valid geometry (Appx. A.1)

2. perform peeling computation

3. compute cost according to Eq. (16)

Generation loop

1. sort geometries according to their cost

2. eliminate the Nchild+Nnew+Nmut worst-rated geometries

3. arrange Nchild best-rated geometries to random pairs,
generate from each pair two children (Appx. A.2)

4. obtain mutations of the Nmut best-rated geometries (Appx. A.3)
(original geometries are still in population)

5. generate Nnew valid geometries (Appx. A.1)

6. perform peeling computation for Nchild+Nnew+Nmut new geometries

7. compute cost for Nchild+Nnew+Nmut geometries according to Eq. (16)

8. check if Nmut mutations show smaller costs than original geometries,
set cost of worse-rated to a large value in order to discard them

Table 1: Schematic of the implemented genetic algorithm (GA)

optimization problem,

min
x

Ψ, Ψ =
(
1− 1

2 cos 2x
) (
x2 + 1

)
, x ∈ [−15, 15], (22)

where Ψ is a non-convex function showing multiple minima. For this test problem, the best
genetic string approximates the absolute minimum, Ψ(0) = 0.5, very fast: For the optimization
parameters given in Tab. 11, the relative error of the exact solution and the smallest cost of the
10th generation is less than 10−6. Nevertheless, while it is generally believed that the absolute
minimum can be determined when using a genetic algorithm, the latter may require numerous
function evaluations to converge to it. In other words, convergence to an absolute minimum
within a specified number of generations cannot be guaranteed.

In principle, genetic algorithms can be used to detect multiple local minima. Depending on how
those minima differ in their cost, however, genetic strings that have obtained a local minimum
are replaced soon by those approaching a minimum with smaller cost.
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4 Results

Before applying the optimization method discussed in Section 3 to problem (15), we perform
a feasibility study in order to analyze the influence of differently curved strip heights and
widths. Afterwards, we present peeling film shapes that we obtain with the genetic algorithm
for differently weighted optimization criteria. We then investigate several geometry parameters.

4.1 Benchmark cases

This section demonstrates the spectrum of feasible beam shapes by studying several test ge-
ometries. For these shapes, both the energy terms of Eq. (16) and the maximum peeling force
are studied.

4.1.1 Shape generation

In order to obtain 25 differently shaped strips, we consider the following five curves respectively
for the height, H, and width, W :

FI(S) = cF − dF · cos (π S/L) · 0.5L, (23)

FII(S) = cF + dF · (S − 0.5L), (24)

FIII(S) = cF , (25)

FIV(S) = cF − dF · (S − 0.5L), (26)

FV(S) = cF + dF · cos (π S/L) · 0.5L. (27)

The resulting shapes are sketched in Fig. 3. The curve parameters, cF , dF > 0, are chosen such
that all geometries have (1) equal volume, V , and (2) a lower surface with area, Alow

10; see
Tab. 9. The remaining geometry, material, and adhesion parameters are given in Tab. 10. The
peeling, deformation, and contact energies, Πref

ext, Πref
int, and Πref

c , obtained for (HIII,WIII), are
used in the following sections for normalization.11

4.1.2 Influence on the peeling force

We investigate the influence of the strip height and width separately by comparing the most
characteristic shapes: HI, HIII, and HV combined with WIII; and vice versa. This results in
five different shapes, which are marked in green in Fig. 3. The corresponding peeling reaction
forces are shown in Fig. 4. It can be seen in Fig. 4(a) that for a constant height, an increasing
width towards Ptip increases both the maximum peeling force, Pmax, and the displacement
for full separation, u∞. This observation agrees well with the results of Pantano et al. (2011).
Nevertheless, for the test cases considered here, Pmax also increases for those shapes that become
thicker towards Ptip; this contradicts the observations made by Pantano et al. (2011). We thus
assume that the relation of the force and the strip height is nonlinear; this issue is further
investigated in a following study; see (Mergel and Sauer, 2014).

Fig. 5(a) outlines the spectrum of peeling reaction forces that are obtained for the benchmark
shapes. Here, the shapes (HI,WI), (HI,WV), (HV,WI), and (HV,WV) (i.e. the geometries in the
corners of Fig. 3) are considered. The smallest and largest maximum forces occur respectively

10The lower surface area is given by Alow =
∫
L
W dS.

11These terms are given by Πref
ext = 297.267EL3

0, Πref
int = 127.587EL3

0, and Πref
c = 229.950EL3

0.
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Figure 3: Schematic representation of the 25 benchmark geometries; the peeling force is applied
at the left boundary, Ppeel; the right boundary is denoted as Ptip (shapes are exaggerated for
better visualization)
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Figure 4: Peeling force for the benchmark geometries marked in green in Fig. 3
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for (HV,WV) (bottom right) and (HI,WI) (top left). This agrees well with the observations
made before. It is apparent from geometry (HI,WV) that a large maximum reaction force
does not necessarily imply a high detachment stability. It is not desirable, however, to design
a strip that resists large peeling forces but fully detaches for small imposed displacements.12

This observation motivates us not considering the peak force but rather maximizing the total
externally applied work.
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(a) Force for the strips shown in the corners of Fig. 3
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Figure 5: Peeling force, P , and cost, Ψ, for the benchmark geometries considering the weighting
parameters cp=cc=1

4.1.3 Influence on the energy terms

Tab. 2 shows the three energy terms from Eq. (16) for all benchmark cases. The characteristic
shapes that are highlighted in Fig. 3 are marked in bold. The total contact energy, Π∞c , is
independent of the strip height; it increases with the contact area, Ac, which is largest for
WI, and smallest for WV. In analogy to the external forces, both the applied work, Π∞ext, and
the deformation energy, Πmax

int , increase if the film becomes either wider or thicker towards the
boundary Ptip. Inversely, both quantities decrease if the height and width become smaller in
this direction. The total contact energy, Π∞c , and the external work, Π∞ext, seem to be correlated
to each other, see Tab. 2. The observation coincides with the assumption that the strain energy
becomes largest right before full separation, which would yield with Eq. (1): Π∞ext ≈ Πmax

int +Π∞c .
This issue is further discussed in Section 4.3.

4.1.4 Influence on the cost function

Fig. 5(b) and Tab. 2 show the cost, Ψ, obtained for all benchmark geometries with the weighting
parameters cp = cc = 1. One finds that for these weightings, the optimal geometry has a large
contact area and becomes thinner at its attached tip; this can be seen for (HV,WI) and (HIV,WI)
in the top right corner of Fig. 3. Both structures show – in comparison to the rectangular strip,
(HIII,WIII) – larger peeling energies but smaller deformation energies. Considering adhesion
mechanisms in nature, we observe that these two geometries roughly correspond to the shape
of a gecko spatula tip (Fig. 6(a)).

12This would be the case for very stiff structures.
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(H,W ) Ψ Π
∞
ext Π

max
int Π

∞
c

1. (HV,WI) 2.604 1.141 0.902 1.212
2. (HIV,WI) 2.620 1.110 0.894 1.212
3. (HV,WII) 2.637 1.106 0.875 1.167
4. (HIV,WII) 2.639 1.074 0.851 1.167
5. (HV,W III) 2.714 0.916 0.623 1.000

6. (HIV,WIII) 2.735 0.889 0.610 1.000
7. (HV,WIV) 2.964 0.731 0.397 0.833
8. (HIII,W III) 3.000 1.000 1.000 1.000
9. (HIII,WII) 3.054 1.246 1.394 1.167
10. (HIV,WIV) 3.062 0.712 0.457 0.833

11. (HIII,W I) 3.071 1.296 1.474 1.212
12. (HV,WV) 3.081 0.697 0.377 0.788
13. (HIV,WV) 3.167 0.676 0.420 0.788
14. (HIII,WIV) 3.168 0.773 0.675 0.833
15. (HIII,WV) 3.242 0.729 0.602 0.788

16. (HII,WIV) 3.367 0.867 1.013 0.833
17. (HII,WIII) 3.393 1.179 1.545 1.000
18. (HII,WV) 3.398 0.804 0.886 0.788
19. (HI,WIV) 3.487 0.888 1.160 0.833
20. (HI,WV) 3.502 0.815 1.006 0.788

21. (HI,W III) 3.535 1.220 1.715 1.000
22. (HII,WII) 3.709 1.541 2.203 1.167
23. (HII,WI) 3.800 1.623 2.358 1.212
24. (HI,WII) 3.883 1.594 2.399 1.167
25. (HI,WI) 3.992 1.682 2.573 1.212

Table 2: Cost function terms for the benchmark geometries using cp = cc = 1; the shapes that
are highlighted in green in Fig. 3 are marked in bold

4.2 Peeling strip design using a genetic algorithm

After studying the influence of different shapes on our optimization criteria, we use the genetic
algorithm from Section 3 to optimize both the strip height and width w.r.t. problem (15).

4.2.1 Optimal shape

First, we choose the weighting parameters cp = cc = 1. Additional parameters (which are also
used in the following sections) can be found in Tab. 11. The best-rated shape of the 400th

generation is shown in Fig. 6(b) – 6(d).13 The geometry is very similar to the shape of a
gecko spatula; cf. Fig. 6(a) and 6(b). Regarding the benchmark test, the strip resembles closest
the best-rated geometry, (HV,WI). Note that for the optimized geometry, the inclinations of
both the height and width are small at the boundaries; this may be caused by the procedure
used for the geometry generation (Tab. 6). Fig. 7(a) shows the strip deformation for four
different configurations. Fig. 7(b) compares the peeling force to the force observed for the
shape (HV,WI). Initially, the peeling forces agree well for both shapes. Both the maximum

13The beam axis is initially curved (Fig. 1). The strip, however, is only insignificantly shorter than L when
considering Cartesian coordinates, (X,Y ); e.g. X(L) = 0.994L for the shape in Fig. 6.
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(a) Electron microscopy of a gecko spatula,
adopted with permission from J. R. Soc. In-
terface (Rizzo et al., 2006)

(b) 3D view

(c) Height (distorted profile view) (d) Width (distorted top view)

Figure 6: Comparison of the shape of a gecko spatula and the best geometry obtained for
cp=cc=1 (GA, 400 generations)

force and the corresponding displacement are very similar; the good agreement is probably
caused by similar cross sections at Pc.

We recognize that the shapes obtained with the genetic algorithm are comparable to the best-
rated benchmark cases. This verifies our implemented optimization method. We further observe
that the detachment stability of the optimized shape, indicated by u∞, is nearly twice as large
as for shape (HV,WI). The externally applied work therefore increases from 1.141 Πref

ext to
1.569 Πref

ext. In addition, the optimized structure is deformed less while having a larger contact
area; thus, the cost is remarkably smaller: Ψ = 1.948 compared to Ψ = 2.604 for the benchmark
case.

The minimum cost of the population decreases significantly in the first 60 generations of the
genetic algorithm, but hardly improves afterwards. It remains constant for the last 130 gener-
ations, which may imply convergence to the optimal solution. Nevertheless, using a stochastic
algorithm, one cannot guarantee that the obtained solution is the absolute minimum. As ex-
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(a) Deformation for u/L0 = 0, 40, 80, 120
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(b) Peeling force

Figure 7: Deformation and peeling force of the geometry obtained for cp=cc=1 (GA, 400 gen-
erations)

pected, Ψ converges for a fixed geometry if both the load increment, ∆u, and the number of
finite elements, nhel, are refined.

4.2.2 Extension of the optimization space

We now extend the design space by refining the optimization mesh from 50 to 100 elements;
noptel = 100. Fig. 8 compares the shape obtained after 1600 generations to the original geometry
from Section 4.2.1. The cost, Ψ = 1.946, of the new structure is slightly smaller than Ψ = 1.948
for noptel = 50; the strip shapes, however, differ remarkably. The extended optimization space
must include the original space; therefore, Ψ does not increase with a finer optimization mesh.
In addition, extending the design space, it is very likely to obtain a minimum that is smaller
than the previous one; this can be observed for the present case.

(a) Height (distorted profile view) (b) Width (distorted top view)

Figure 8: Best-rated shape obtained for 100 optimization elements (GA, 1600 generations) in
comparison to results for 50 elements (GA, 400 generations; see Section 4.2.1)

15



4.3 Variation of the weighting parameters

The results of the previous sections have been obtained with constant weightings, cp = cc = 1.
This section presents optimal strip shapes for varying weighting parameters. In order to study
the spectrum of feasible geometries, we vary both parameters strongly; here, we choose cp, cc =
1/10, 1, 10, which leads to 9 different test cases. Fig. 9 depicts the best geometries obtained
after 400 generations of the genetic algorithm. The geometry in the middle corresponds to the
solution that is discussed in Section 4.2.

(a) cp = 0.1, cc = 0.1 (b) cp = 0.1, cc = 1 (c) cp = 0.1, cc = 10

(d) cp = 1, cc = 0.1 (e) cp = 1, cc = 1 (f) cp = 1, cc = 10

(g) cp = 10, cc = 0.1 (h) cp = 10, cc = 1 (i) cp = 10, cc = 10

Figure 9: Best-rated beam shapes varying the weighting parameters, cp and cc (GA, 400 gen-
erations); the peeling force is applied at the left boundary

Tab. 3 shows both the volume and the energy terms of the best-rated shapes. Note that the
magnitudes of the cost, Ψ, cannot be compared, because they depend on cp and cc. The most
significant geometries occur for cp = cc = 0.1 and cp = cc = 10, where the strain energy is
weighted most and least strongly. For the other parameter combinations, the strip tends to
increase in width and decrease in thickness. Regardless of the weightings, the beam volume
tends to increase to the maximum permitted value. This suggests that we should additionally
minimize the beam volume.

As Fig. 9 shows, the shape of the strip is similar if the parameters, cp and cc, are switched.
Even for cp = 0.1, cc = 10 and cp = 10, cc = 0.1 – where both parameters change by the
factor 100 – differences can be observed only at the left tip. In addition, Tab. 3 indicates that
the externally applied work increases with the weighting for the contact energy, and vice versa.
This observation agrees with the results in Section 4.1.3. We can conclude that, regarding those
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cp cc V /Vmax Π
∞
ext Π

max
int Π

∞
c

0.1 0.1 0.999 0.623 0.244 0.722
0.1 1 1.000 1.346 0.585 1.528
0.1 10 0.991 1.777 1.081 1.921

1 0.1 0.999 1.297 0.586 1.462
1 1 1.000 1.569 0.746 1.772
1 10 0.879 1.814 1.113 1.942

10 0.1 0.804 1.900 1.250 1.954
10 1 0.893 1.980 1.474 1.954
10 10 0.975 2.066 1.734 1.960

Table 3: Peeling, deformation, and contact energy for the best-rated shapes varying the weight-
ing parameters cp and cc (GA, 400 generations)

three terms, it would be sufficient to maximize either the external work or the contact area.
Consequently, only one weighting parameter would be required here.

4.4 Variation of the maximum volume

The considered design space depends on the geometry parameters that are chosen for the con-
straints of Section 2.3. Here, we give an exemplary study of their influence, investigating only
the maximum volume, Vmax, here. Denoting the maximum value from Section 4.2 as V 0

max(
V 0
max = 6 · 105 L3

0

)
, we vary the volume by Vmax / V

0
max = 2/3, 1, 3/2. As Fig. 10 shows, the

(a) Vmax = 2/3 V 0
max (b) Vmax = 1V 0

max (c) Vmax = 3/2V 0
max

Figure 10: Best-rated beam shapes varying the maximum volume, Vmax (GA, 400 generations);
the peeling force is applied at the left boundary

maximum permitted volume influences the optimal beam shape strongly. For all parameters
considered here, the structure flattens to a thin strip at Ptip. The maximum height increases
with increasing Vmax. Since the minimum width is chosen very small (Wmin = 5L0), the peeling
strip may become very slim. We note that large variations in the cross section are not properly
captured by a beam theory. Tab. 4 compares both the volume and the energy terms measured
for the three shapes. For Vmax = 2/3V 0

max, the peeling strip does not attain the maximum
volume. Although this strip is very thin, it shows the largest strain energy; this is probably
caused by the large gradient in the strip width. Thus, a study of the derivative, ∂W/∂S, could
be of interest.
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Vmax / V
0
max V /Vmax Π

∞
ext Π

max
int Π

∞
c Ψ

2/3 0.818 1.620 0.924 1.771 2.106
1 1.000 1.569 0.746 1.772 1.948

3/2 0.999 1.498 0.584 1.735 1.828

Table 4: Peeling, deformation, and contact energy for the best-rated shapes varying the maxi-
mum volume, Vmax (GA, 400 generations)

4.5 Variation of the contact length

Finally, we study the influence of the contact length by varying Lc /L = 0.25, 0.5, 0.75 for
cp =cc =1. Fig. 11 shows the shapes that are obtained with the genetic algorithm for different
contact lengths. Note that Lc = 0.5L corresponds to the test case of Section 4.2. We observe

(a) Lc = 0.25L (b) Lc = 0.5L (c) Lc = 0.75L

Figure 11: Best-rated beam shapes varying the contact length, Lc (GA, 400 generations); the
peeling force is applied at the left boundary; the adhesive part of the strip is marked in blue

that the adhesive part of the strip approaches the minimum thickness, Hmin. The non-adhesive
part, which is peeled off first, tends to be a thick beam with small width. At the transition
between the two parts (Pc in Fig. 1), the width tends to adopt the maximum value, Wmax.

Fig. 12 shows the forces required to peel the strips of Fig. 11 from the substrate. The longer
the adhesive part, the larger are (1) the maximum force and (2) the displacement for full
detachment, u∞: If the contact length is increased by 0.25L, the peak force almost doubles.
For increasing Lc, both the externally applied work and the contact energy increase, while the
strain energy decreases (Tab. 5); thus, the cost, Ψ, improves regardless of the weightings, cp
and cc.

Lc /L V /Vmax Π
∞
ext Π

max
int Π

∞
c Ψ

0.25 1.000 0.955 0.771 0.939 2.884
0.50 1.000 1.569 0.746 1.772 1.948
0.75 0.999 1.941 0.609 2.216 1.575

Table 5: Peeling, deformation, and contact energy of the best-rated shapes varying the contact
length, Lc (GA, 400 generations)

In the present study, we restrict ourselves to a constant strip length, L. In order to investigate
the optimal length of adhesive microstructures, other parameters apart from the ratio Lc /L
have to be studied. In particular, the peeling behavior can also depend on the strip length, L,
compared to the range of adhesion, r0.
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Figure 12: Peeling force for the best-rated beam shape varying the contact length, Lc (GA, 400
generations)

5 Conclusion

We present a novel shape design study for flexible adhesive microstructures undergoing finite de-
formations during peeling. This study includes both the application of an optimization method
and the peeling analysis using a nonlinear beam finite element model. Our aim is to determine
– as a preliminary investigation – objectives and constraints that are important for the shape
design of thin adhesive strips. To get a first impression of optimum shapes for various criteria,
we apply a genetic algorithm here.

We aim to obtain a flexible and elongated peeling strip that adhere to the substrate strongly.
These requirements can be achieved by

1. the maximization of the externally applied work,

2. the maximization of the total contact area, and

3. the minimization of the strain energy.

The three quantities are studied by considering various benchmark shapes. We observe that, if
the strip increases towards the attached tip in width, both the maximum required peeling force
and the external work increase significantly. Further, we assume that (1) the relation between
the strip height and the peeling force is nonlinear, and (2) also the derivatives of the height
and width w.r.t. the beam axis are important. By performing a parameter study, we determine
model parameters that provide strip geometries very similar to a gecko spatula. Compared to
a rectangular strip, those structures increase the external peeling work, but decrease the strain
energy.

The underlying design problem is investigated for various parameters and differently weighted
objectives. For a further investigation, the consideration of multi-criteria optimization will
be promising. In addition, since stochastic methods like the genetic algorithm are inefficient
compared to gradient-based approaches, the problem will be reformulated in order to facilitate
the application of gradient-based approaches.

Apart from the shape, the adhesion of microstructures is influenced by several other factors.
Recently, Peisker et al. (2013) have investigated setae of the ladybird beetle; they provide the
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evidence that the adhesive fibrils have a varying material stiffness. Since the authors conclude
in their study that this can increase adhesion, it would be interesting to consider both the shape
and the material properties in the design process.

In addition, the applied contact model can be modified to account for stiction; this allows
us varying the direction of peeling. Since several adhesion mechanisms are anisotropic14, the
peeling direction may also influence the optimum shape of microstructures. This is under
further investigation by the authors (Mergel and Sauer, 2014). Additionally, the objectives in
the presented design approach can be combined with self-cleaning or non-clumping properties.
A long-term aim is the extension of the presented model to adhesive structures with arbitrary
shaped surface.

A Genetic algorithm

This section contains supplemental information on the genetic algorithm applied here. In the
following, the nodal height, Hopt

I , and width, W opt
I , are abbreviated by FI .

A.1 Geometry generation

New random geometries are generated according to the algorithm outlined in Tab. 6. The
initially obtained curves are quite uneven; they are thus smoothed by a filter, considering a
hat-shaped filter function with a constant width. We note that this procedure restricts our
optimization space. The influence of the filter width should therefore be objective of a further
study.

Omitting the volume constraint (19), we observe that the nodal values of the obtained geometries
are equally distributed along the intervals [Hmin, Hmax] and [Wmin,Wmax]. Depending on the
maximum permitted volume, Vmax, however, the random geometries approach Hmax and Wmax

less frequently than smaller values.

Iteration until volume constraint (19) is fulfilled

1. generate nodal height and width, FI , I = 1, . . . , noptno

i. generate first value, F1, fulfilling box constraint (20)

ii. continue with I = 2, . . . , noptno

• compute upper/lower boundary for FI , FA and FB,
fulfilling the box and slope constraints (20) & (21)

• obtain new value, FI = FA + (FB−FA)φI , φI ∈ [0, 1]

2. apply a smoothing filter to FI , I = 1, . . . , noptno

Table 6: Geometry generation for the genetic algorithm

14This has been discussed for gecko adhesion e.g. by Autumn et al. (2000) and Autumn et al. (2006).
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A.2 Generation of child geometries

The height and width,
(
Hp

I ,W
p
I

)
and (Hm

I ,W
m
I ), of two parent geometries are combined to

obtain two child geometries; this procedure is described in Tab. 7. The quantities µabs, µrel � 1
denote relative and absolute mutation rates.

Iteration until box, slope, and volume constraints (19) – (21) are fulfilled

generate nodal height and width, FI , I = 1, . . . , noptno

1. generate random values φabsA , φabsB ∈ [1−µabs, 1+µabs]
and φrelA , φrelB ∈ [−µrel, 1+µrel]

2. obtain two nodal random numbers, I = 1, . . . , noptno

φabsI = φabsA +
(
φabsB −φabsA

)
·
(
I−1

)
/
(
noptno −1

)
,

φrelI = φrelA +
(
φrelB −φrelA

)
·
(
I−1

)
/
(
noptno −1

)
3. combine values F p

I and Fm
I to

FI = φabsI

[
φrelI ·F

p
I +

(
1−φrelI

)
·Fm

I

]
, I = 1, . . . , noptno

Table 7: Generation of child geometries for the genetic algorithm

A.3 Mutation

The best-rated geometries of each generation are mutated by a relative mutation rate, µ � 1.
This procedure is illustrated in Tab. 8.

Iteration until box, slope, and volume constraints (19) – (21) are fulfilled

generate nodal height and width, FI , I = 1, . . . , noptno

1. generate random values φA, φB ∈ [1−µ, 1+µ]

2. mutate original geometry, F old
I , by

FI = φI · F old
I , I = 1, . . . , noptno

Table 8: Mutation of the best geometries for the genetic algorithm

B Parameters

The following section summarizes the parameters used for the test cases in Section 4.
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B.1 Curve parameters for the benchmark case

The following parameters are identical for all benchmark strips: cW = 150L0, dW = 0.5, and
dH = 0.1. The parameter cH , indicating the thickness of the strip at S = L/2, is adjusted
s.t. the strips have both an identical volume, V , and a lower surface with area, Alow; see Tab. 9.

cH [L0] for HI − HV

HI HII HIII HIV HV

W = WI 23.3402 23.6518 25 26.3482 26.6598
W = WII 23.6518 23.8889 25 26.1111 26.3482
W = WIII 25 25 25 25 25
W = WIV 26.3482 26.1111 25 23.8889 23.6518
W = WV 26.6598 26.3482 25 23.6518 23.3402

Table 9: Curve parameter cH for the benchmark geometries of Section 4.1; the remaining
parameters are dH = 0.1, cW = 150L0, and dW = 0.5

geometry L0 = 1 nm, L = 200L0, V = 7.5 · 105 L3
0, Alow = 3 · 104 L2

0

material E = 2 GPa, ν = 0.2

adhesion AH = 10−19 J, r0 = 0.4 nm, Lc = 0.5L

Table 10: Geometry, material, and adhesion parameters for the benchmark case in Section 4.1

B.2 Parameters for the genetic algorithm

Tab. 11 summarizes the parameters used in Sections 4.2 – 4.5.

geometry L0 = 1 nm, L = 200L0, Vmax = 6 · 105 L3
0,

Hmin = 8L0, Hmax = 40L0, Wmin = 5L0, Wmax = 300L0,
H ′′max = 1/(16L0), W ′′max = 7/(16L0)

material E = 2 GPa, ν = 0.2

adhesion AH = 10−19 J, r0 = 0.4 nm, Lc = 0.5L

computation noptel = 50, nhel = 4noptel

optimization Ntotal = 100, Nchild = 20, Nnew = 36, Nmut = 4,
µabs = 0.05, µrel = 0.25, µ = 0.01, 400 generations

Table 11: Parameters for the genetic algorithm used in Sections 4.2 – 4.5
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