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Abstract

The partial wetting of droplets on rigid, chemically contaminated substrates is investigated
numerically for Bond numbers Bo ≤ 5. To this end a recently developed numerical framework
(Sauer, 2014; Sauer et al., 2014) based on a finite element discretisation and a computational
contact algorithm is used. Its applicability to wetting on chemically heterogeneous substrates
is demonstrated. An analytical expression for the change in the apparent contact angle in the
presence of an arbitrarily strong chemical contamination is derived based on a perturbed force
equilibrium analogy at the triple phase contact line. The analytical prediction is compared to
the theory by de Gennes (1985) as well as to the modified Cassie’s law (Cassie, 1948) with perfect
agreement in the limit of small perturbations, i.e. small chemical contaminations. The predicted
change in the apparent contact angle is used to define a mapping between the droplet shape for
wetting on homogeneous substrates and chemically heterogeneous substrates. Numerical results
are presented for circular, patterned substrates (axial and radial patterns) as well as locally
introduced perturbations on otherwise homogeneous substrates. The results for the droplet
shape on chemically contaminated substrates show good agreement with the analytical solution
for the droplet’s height and wetting radius on homogeneous substrates when the presented
mapping is applied. Moreover, the present results are in good quantitative agreement to results
reported in literature.

Keywords: Wetting, chemical contaminations, numerical methods, contact angle, interface
heterogeneity

1 Introduction

The wetting dynamics of droplets on topographically or chemically heterogeneous or contam-
inated substrates is of importance in nature as well as in a variety of technical applications.
The wetting of plant leaves by rain droplets, such as the lotus leaf (Bittoun and Marmur,
2012) or the elephant’s ear leaf (Quéré, 2008) is an example from nature, where the substrate’s
topography significantly influences the wetting process. Paint and ink spreading in printing
processes, the use of adhesives in industrial applications and hydrophilic/hydrophobic coatings
in the chemical industry are common examples of wetting processes in technical contexts involv-
ing droplets on heterogeneous substrates. To understand the differences in the wetting process
on heterogeneous substrates compared to homogeneous substrates is therefore of fundamental
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interest. Recently, some progress has been made in the field by means of experiments, theo-
retical predictions and numerical investigations. Major results can be found in the reviews by
Quéré (2008) on wetting of topographically heterogeneous (textured) substrates, by Bonn et al.
(2009) on the (thermo-)dynamics of wetting on rough and chemically heterogeneous substrates
as well as by Snoeijer and Andreotti (2013) on the dynamics of moving contact lines. The wet-
ting of chemically and/or topographically heterogeneous substrates features some interesting
phenomena not observed on perfectly homogeneous substrates, such as anisotropic spreading,
inhibition of droplet spreading, discontinuities in the spreading process as well as the obser-
vation of more than one equilibrium state for an identical droplet/substrate scenario. In the
following we briefly review some contributions to the understanding of wetting on chemically
heterogeneous substrates (Sec. 2) and motivate the present investigation (Sec. 3).

2 Literature survey on chemically heterogeneous substrates

In this section we review contributions to the field of wetting on chemically heterogeneous sub-
strates. We focus thereby on studies that investigate the wetting on chemically heterogeneous
substrates, where the substrate’s wettability properties change at distinct locations, i.e. areas
with different properties are separated by clearly identifiable borders. This wetting scenario cor-
responds to the substrate’s surface properties studied in the present investigation, as described
in Sec. 3. Furthermore, we mainly restrict ourselves to reviewing numerical studies.

Schwartz and Eley (1997) investigated by means of numerical simulation the dynamic droplet
spreading on a chemically heterogeneous substrate. The substrate was thereby composed of two
materials with significantly different wetting properties. The authors found that the motion of
the droplet is almost discontinuous in the event of a droplet breakup. The breakup process is
thereby dominated by wetting forces, and instability mechanisms play a minor role only.

Woodward et al. (2000) studied experimentally the partial wetting characteristics on chemically
heterogeneous substrates composed of random hydrophilic and hydrophobic patches with typical
length scales in the nanometer regime. They found the measured contact angle for water to be
lower than the theoretical prediction by Cassie (1948) and argued that long-range hydrophobic
interactions may result in an effective increase of the hydrophobic patch area compared to the
hydrophilic one altering the equilibrium contact angle. For the length scales considered, the
results were independent of the droplet size indicating line tension effects to be minimal.

Vellingiri et al. (2011) extended the numerical investigations of Savva and Kalliadasis (2009) and
Savva et al. (2010) to the spreading of two-dimensional droplets on chemically heterogeneous
substrates assuming small contact angles. The chemical heterogeneity was thereby accounted
for by local variations in the microscopic contact angle acting as a boundary condition to the
governing equations. As for the case of a topographically heterogeneous substrate, multiple
equilibria existed for identical droplet/substrate configurations and a stick-slip behavior was
observed at the droplet front. The wetting state of droplets on periodically heterogeneous
substrates showed a behavior that could not be explained by the Cassie relation (Cassie, 1948),
cf. also Woodward et al. (2000).

Buehrle et al. (2002) numerically studied the shape of liquid droplets on substrates with a lateral
striped wettability pattern and focused on the wettability contrast, the transition sharpness and
the line tension of the triple phase contact line. The results revealed the influence of the local
wettability of the substrate, the local curvature of the contact line and the lateral gradients in
the line tension on the local contact angle and its modulation. The modulation of the local
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contact angle decreased with an increasing contact line tension and with a decreasing sharpness
of the wettability pattern.

In the numerical study by Dupuis and Yeomans (2004) the spreading of droplets on striped,
chemically heterogeneous substrates was studied by means of Lattice Boltzmann (LB) simu-
lations solving the Navier-Stokes equations. While the spreading on homogeneous substrates
revealed a clear functional dependence of the wetting radius on a dimensionless time indepen-
dent of the surface tensions and viscosities (cf. also Snoeijer and Andreotti (2013)), the wetting
velocity was anisotropic for the case of a striped substrate. The equilibrium shape of the ses-
sile droplet was highly influenced by the underlying pattern of the chemically heterogeneous
substrate.

Adão et al. (1999) investigated the wetting characteristics of droplets on regularly and randomly
distributed chemical heterogeneities by means of Molecular Dynamics (MD) simulations. The
size of the heterogeneities was thereby on the atomistic length scale. The authors were able to
show the validity of Cassie’s law (Cassie, 1948) for equilibrium contact angles in the presence
of molecular heterogeneities on the substrate.

In their MD simulations, Lundgren et al. (2007) investigate the behavior of nano-scale droplets
on checker board-patterned and striped chemically heterogeneous substrates. The authors found
the ratio of the domain size to the initial droplet size to be of importance in such simulations,
particularly when the droplet size is comparable to the domain size. Furthermore, they showed
that the specific topography—striped, checker-boarded or pillar structured—and composition
of the substrate is of importance for the equilibrium wetting state. Depending on the specific
properties of the substrate the contact behavior between the droplet and the solid was not well
described by the Wenzel (Wenzel, 1936), Cassie (Cassie, 1948) or Cassie and Baxter equations
(Cassie and Baxter, 1944) and the quantitative agreement was poor.

Iliev and Pesheva (2003) studied numerically the wetting properties of chemically heterogeneous,
circular substrates (axial and radial patterns). The influence of the substrate’s heterogeneity
on the equilibrium wetting state of the droplet was discussed and the results were analyzed in
the light of the applicability of the Cassie or modified Cassie equation (Cassie, 1948). For the
first type of heterogeneity the Cassie as well as the modified Cassie equation was valid and the
approximation became better when the droplet size increased relative to the length scale of the
heterogeneity. For the second pattern the Cassie equation was reasonably well satisfied.

Regarding the validity of the Wenzel (Wenzel, 1936), (modified) Cassie (Cassie, 1948) and Cassie
and Baxter equations (Cassie and Baxter, 1944) the majority of authors agree upon droplet size
effects as the main reason for the observed deviations from theory. If the droplet size is chosen
sufficiently large compared to the length scale of the substrate’s heterogeneities, the resulting
wetting state is well described by the theoretical predictions.

3 Motivation of the present work

In the present investigation we introduce a new approach for the numerical investigation of chem-
ically contaminated substrates. The new numerical approach is based on the Finite Element
Method (FEM) representing sessile droplets as liquid membranes under hydrostatic conditions
(Sauer et al., 2014). The chemical contaminations are thereby accounted for via a force equilib-
rium analogy due to their influence on the surface tension, which in turn affects the triple phase
contact line between the partially wetting droplet and the rigid substrate. At the solid-liquid
interface a computational contact mechanical algorithm is applied to capture the spreading be-
havior during the wetting process. The representation of a droplet as a liquid-filled membrane
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and the interpretation of chemical heterogeneities from the mechanical point of view as well as
the numerical framework based on a contact algorithm and the FEM is new to the scientific
community. The new approach is applied to chemically contaminated substrates, where the
contamination affects either the entire triple phase contact line or only parts of it.

Some types of chemical contaminations the approach is able to model (but not limited to)
are depicted schematically in Fig. 1. Axially and radially patterned substrates are shown in
subfigures (a) and (b), the first corresponding to the regime II setup of Lipowsky et al. (1999).
An axially-radially patterned substrate is depicted in subfigure (c), where only parts of the
triple phase contact line are affected by the change in the substrate’s wetting properties. A
special case of an axially-radially patterned substrate is shown in subfigure (d), the so-called
dartboard pattern. Subfigures (e) and (f) show chemically locally perturbed substrates were
either the entire or only parts of the contact line are affected in analogy to de Gennes (1985). In
the described scenarios, the differences in the wetting characteristics may either be due to the
local properties of the substrate itself or due to a liquid film of infinitely small height coating
parts of the substrate’s surface.

(a) (b) (c)

(d) (e) (f)

Figure 1: Schematic sketches of the partial wetting scenarios on chemically heterogeneous substrates
considered in the present investigation. (a) Axially and (b) radially patterned substrates, (c) Axially-
radially patterned substrate, (d) Dartboard patterned substrate. (e+f) Chemically locally perturbed
substrates. In each subfigure the top view (left) and side view (right) is depicted with the droplet
indicated in blue. The different wetting properties of the substrate are indicated in black and white.

The remainder of this paper is organized as follows. In Sec. 4 the analytical theory by de Gennes
(1985) for weak chemical contaminations is recast and a perturbed force equilibrium analogy
at the triple phase contact line is presented. It is shown that in the limiting case of small
contaminations, the predicted change in the local contact angle is identical for both theories.
Additionally, the perturbed force equilibrium analogy is shown to be valid for large contami-
nations and therefore to be applicable in a more general fashion. Furthermore, the modified
Cassie’s law (Cassie, 1948) is reformulated in the present context. In Sec. 5 the numerical
framework is introduced. In Sec. 6 numerical results are presented and compared to analytical
predictions for the Bond number Bo = 0 and chemical contaminations affecting the entire triple
phase contact line. Furthermore, results are discussed for the presence of gravity (0 < Bo ≤ 5)
and for contaminations acting on parts of the droplet only. In Sec. 7 we summarize our findings
and conclude our study, giving some remarks on possible extensions of the present study.
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4 Analytical theory

In this section we recast the analytical theory presented by de Gennes (1985) for weakly per-
turbed substrates in the presence of chemical contaminations and introduce the perturbed force
equilibrium analogy governing the force equilibrium at the triple phase contact line for chemi-
cally heterogeneous substrates. We show that for the limit of small perturbations the change in
the apparent contact angle predicted by the force equilibrium analogy is identical to the theory
by de Gennes (1985). Furthermore, we comment on Cassie’s law (Cassie, 1948) for chemically
heterogeneous substrates and its interpretation in the present context.

4.1 The theory of locally, weakly perturbed substrates by de Gennes (1985)

de Gennes (1985) introduced an analytical theory for the presence of a chemical contamination,
or weak fluctuation, on the substrate at the location x = (x, y)T (for arbitrary Bond numbers).
The chemical contamination δ(x) is thereby described in terms of the local interfacial tensions
γSG(x) and γSL(x) at the location x, or, more precisely, by their fluctuation due to the presence
of a chemical contamination,

δ(x) = γSG(x)− γSL(x)− 〈γSG − γSL〉φ , (1)

where δ is the disturbance measure, γij are the interfacial tensions, φ is the circumferential
co-ordinate direction along the contact line, and 〈·〉φ denotes the spatial average over the cir-
cumference. The subscripts S, G and L indicate the solid, gaseous and liquid phase, respectively.
The well-known Young’s equation (Lenz and Lipowsky, 1998)

γLG cos 〈θc〉φ = 〈γSG − γSL〉φ (2)

is locally modified due to the presence of a chemical contamination (see also Fig. 1(e)). From
Eqs. (1) & (2) follows

γLG cos θ(x) = δ(x) + 〈γSG − γSL〉φ (3)

= γSG(x)− γSL(x) , (4)

with θ(x) being the locally modified contact angle at the location x in contrast to the unper-
turbed contact angle θc in the absence of any contamination, see Eq. (2). Assuming the chemical
contamination being small (|∆θ| = |θ(x)−θc| � θc), de Gennes (1985) introduced the following
expression (following from Eqs. (2) & (4)) for the change in the local equilibrium contact angle,
∆θ, at the triple phase contact line due to the presence of a chemical contamination,

∆θ = θ(x)− θc = − δ

γLG sin θc
. (5)

In the present investigation, we set γSL = fγLG, f ∈ R+ (without loss of generality). In
the (limiting) case of the triple phase contact line being situated exactly at the border of
the change in the surface properties (as depicted in Fig. 1), the local solid-liquid interfacial
tension is γSL(x) = γSL = fγLG, while the local solid-gaseous interfacial tension is γSG(x) =
C(x)γSL + γLG cos θc, which follows from the model introduced in Eq. (11). We obtain from
Eqs. (1), (10) and (11) the following expression for the chemical contamination,

δ = γSG(x)− γSL(x)− 〈γSG − γSL〉φ (6)

= C(x)fγLG + γLG cos θc︸ ︷︷ ︸
= γSG(x)

− fγLG︸ ︷︷ ︸
= γSL(x)

−(fγLG + γLG cos θc︸ ︷︷ ︸
= γSG

− fγLG︸ ︷︷ ︸
= γSL

) (7)

= γLG f
(
C(x)− 1

)
, (8)
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where we introduced C(x) ∈ R as a model parameter for the strength of the disturbance δ (see
also Eq. (11)). From Eqs. (5) & (8) follows for the deviation of the perturbed contact angle,
θ(x), from the equilibrium contact angle in the absence of any disturbance, θc,

∆θ =
f(1− C(x))

sin θc
. (9)

4.2 The perturbed force equilibrium analogy

In the numerical framework described in Sec. 5.2 the local contact angle, θc(φ), is imposed at
the triple phase contact line as follows. A line force, qc(φ), is introduced, which is the contact
line force balancing the liquid membrane tensions γSL and γLG acting at the contact line. This
force may be split into two contributions

qch = γSL + γLG cos θc(φ)︸ ︷︷ ︸
= γSG

,

qcv = γLG sin θc(φ) ,

(10)

with the subscripts h and v indicating the horizontal and vertical component of qc(φ), respec-
tively (cf. Sauer (2014)). Fig. 2 (b) shows a schematic sketch of the force equilibrium at the
contact line. In the case of a chemical substrate contamination with strength C at the position

γSL
θc

γSG

γLG

g

(a) Interfacial tension equilibrium

γSL
θc

qch

qcv qc

γLG

g

(b) Force equilibrium analogy

CγSL

θc
qch(x)

qcv(x) qc(x)

γLG

g

(c) Perturbed force equilibrium analogy

Figure 2: Schematic sketch of (a) the interfacial tensions γij acting at the triple phase contact line in the
absence of any chemical contamination/heterogeneity, (b) the force equilibrium analogy as considered by
Sauer (2014) and (c) the perturbed force equilibrium analogy in the presence of a chemical contamination,
C. The change in the horizontal part of qc due to the chemical contamination/heterogeneity is indicated
in red.

x the force equilibrium in horizontal direction is modified due to the presence of the contamina-
tion (see Fig. 2 (c)) and a change in the solid-gaseous interfacial tension, γSG, which is modeled
by the parameter C(x) as

qch(x) = C(x) γSL + γLG cos θc(φ)︸ ︷︷ ︸
= γSG(x)

. (11)

From the model for the solid-gaseous interfacial tension γSG introduced in Eq. (10) and its
extension (11) an expression for the deviation in the local contact angle ∆θF is derived (where
the super-/subscript F stands for force),

C(x) γSL + γLG cos θc(φ)︸ ︷︷ ︸
= γSG(x)

= γSL + γLG cos θF(x)︸ ︷︷ ︸
= γFSG(x)

(12)

C(x) fγLG + γLG cos θc(φ) = fγLG + γLG cos θF(x) (13)

γLG

(
cos θc(φ)− cos θF(x)

)
= γLG

(
f(1− C(x)

)
(14)

=⇒ ∆θF = θF(x)− θc(φ) = arccos
(
f(C(x)− 1) + cos θc(φ)

)
− θc(φ) , (15)
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which is independent of the interfacial tensions γij (due to γSL = fγLG). This is achieved by
introducing the local contact angle θF(x) resulting from the chemical heterogeneity C(x) and
equating γSG(x) with its counterpart γF

SG(x) based on θF(x). γSG(x) takes thereby the local
contact angle θc(φ) in the absence of any chemical heterogeneity into account. We want to
emphasize that the restriction to small chemical contaminations does not apply here, i.e. that
the analytical prediction for the contact angle deviation ∆θF is valid for a much larger range of
chemical contaminations compared to de Gennes (1985).

The parameter C(x) has to be chosen as follows to guarantee physically reasonable results. For
C < 1 the strength of the chemical contamination has to satisfy

θ(x) = θc + ∆θ ≤ π ⇐⇒ C ≥ f + (θc − π) sin θc

f
, (16)

θF(x) = θc + ∆θF ≤ 180◦ ⇐⇒ C ≤ f − 1− cos θc

f
, (17)

and

θ(x) = θc −∆θ ≥ 0 ⇐⇒ C ≥ f − θc sin θc

f
, (18)

θF(x) = θc −∆θF ≥ 0◦ ⇐⇒ C ≤ f − 1− cos θc + 2 cos2 θc

f
, (19)

for C > 1, respectively. A chemical contamination C < 1 thereby introduces a hydrophobic
heterogeneity while C > 1 leads to a hydrophilic heterogeneity. For C = 1, no chemical
contamination is present and δ, ∆θ and ∆θF are identically zero.

4.3 Cassie’s law, revisited

In this section we discuss Cassie’s law in the present context and show that the predicted
change in the apparent contact angle is identical to the prediction derived via the perturbed
force equilibrium analogy, see Sec. 4.2.

Cassie (1948) proposed a modification of the Young’s equation (Lenz and Lipowsky, 1998), see
Eq. (2) above, in the presence of two chemical species A and B on a chemically heterogeneous
substrate,

γLG cos θapp = c
(
γSG − γSL

)
A

+ (1− c)
(
γSG − γSL

)
B
, (20)

where c represents the concentration of the species A and (1 − c) the concentration of the
species B. θapp is the apparent contact angle, which is equivalent to the locally modified con-
tact angle of the previous section, i.e. θapp ≡ θF(x). This holds true for the pattern-like
heterogeneities studied here, where species A and B are not homogeneously distributed with
concentrations c and (1− c), but areas covered only with species A or B are separated by sharp
borders. For the specific type of chemical contamination introduced in Sec. 4.2, Eq. (20) can
be written as

γLG cos θF = c γLG

(
f + cos θA − f

)
+ (1− c) γLG

(
f(C(x)− 1) + cos θB

)
(21)

= c γLG cos θA + (1− c) γLG

(
f(C(x)− 1) + cos θB

)
, (22)

for (γSL = fγLG). For c = 1 the substrate is perfectly homogeneous (species A only) and the
apparent contact angle is identical to the prescribed contact angle θF(x) = θA = θc. For c = 0
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the substrate is completely homogeneously composed of species B and Eq. (22) gives

γLG cos θF(x) = γLG
(
f(C(x)− 1) + cos θB

)
(23)

cos θF(x)− cos θB = f(C(x)− 1) (24)

θF(x) = arccos
(
f(C(x)− 1) + cos θB

)
(25)

=⇒ ∆θC = θF(x)− θc = arccos
(
f(C(x)− 1) + cos θc

)
− θc ≡ ∆θF , (26)

which is identical to the deviation in the apparent contact angle, ∆θF, derived via the perturbed
force equilibrium analogy, see Eq. (15) (for θB = θc). The fact that Eq. (22) is only symmetric
for the species A and B in case C(x) = 1 follows from the modelling approach discussed in
Sec. 4.2.

We want to emphasize that Cassie’s theory is intended to describe the effects of a chemically
heterogeneous substrate on the apparent contact angle where the species A and B are randomly
distributed. The approach followed here (see Secs. 4.1 & 4.2) is the investigation of locally per-
turbed substrates, either perturbed by a locally introduced chemical contamination in analogy
to de Gennes (1985) or by a change in the substrate’s wetting properties at a distinct location
on the substrate, e.g. a structured pattern (see Fig. 1). The location of the perturbation thereby
coincides with the position of the triple phase contact line. Therefore, the theory introduced by
Cassie (1948) corresponds in our setup here to an axially patterned substrate where the change
from species A to species B is located at the triple phase contact line. The axial patterns are
thereby homogeneously composed of either species A or B, a wetting scenario also discussed
theoretically in Lipowsky et al. (1999).

4.4 Comparison of ∆θ and ∆θF

In Fig. 3 the analytical predictions for ∆θ and ∆θF are compared for chemical contaminations
with a strength 0 ≤ C ≤ 2. The predicted deviations ∆θ and ∆θF from the equilibrium
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Figure 3: Comparison of the predicted deviations ∆θ and ∆θF following from Eqs. (9) (black) & (15)
(blue) for f = 1. Calculated values for ∆θ and ∆θF, which are larger than the maximum possible
physical contact angle correction (see Eqs. (17) - (19)) are blanked out. The strength of the chemical
contamination varies in C = [0, 0.1, 0.3, . . . , 0.9, 0.95, 1, 1.05, 1.1, 1.3, . . . , 1.9, 2], which is indicated by the
black arrow. Corresponding symbols in the curves denote equal C. For C = 1 no contamination is
present and ∆θ and ∆θF ≡ 0.

contact angle θc in the presence of a chemical contamination δ are identical for a large range of
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equilibrium contact angles θc. Even for contaminations 0.7 ≤ C ≤ 1.3, where the theory given
by de Gennes (1985) is already significantly stretched, a good match is observed for equilibrium
contact angles 50◦ ≤ θc ≤ 120◦. For weaker chemical contaminations (0.9 ≤ C ≤ 1.1), the
range of θc, where a good match is found, is considerably larger. For very strong chemical
contaminations, large differences are found in the predicted contact angle deviations ∆θ and
∆θF and different asymptotic values for small/large equilibrium contact angles θc are observed.
While the prediction for ∆θ tends to infinity for small/large equilibrium contact angles (θc →
0◦ ⇒ ∆θ → +∞; θc → 180◦ ⇒ ∆θ → −∞), the prediction for ∆θF derived from the perturbed
force equilibrium analogy (Eq. (15)) is bounded for all θc ∈ [0◦, 180◦]. This property of the
prediction for ∆θF is a result of the generality of its derivation, which does not include any
restrictions for the strength of the chemical contamination, δ, nor the contact angle deviation,
∆θF, relative to the equilibrium contact angle, θc.

As we will discuss in detail in Sec. 6, the predictions for ∆θ and ∆θF made in Eqs. (9) & (15)
can be used to transform the results obtained by means of numerical simulations for the shape
of droplets on contaminated substrates to (analytical) reference solutions in the absence of any
perturbation. This opens up the possibility to evaluate the accuracy of experimental as well
as numerical results for the wetting on chemically contaminated substrates against well-known
results obtained for perfectly homogeneous substrates.

5 Numerical framework

In this section, we introduce the equations governing the physics of sessile droplets on rigid
substrates (Sec. 5.1). Furthermore, we present briefly the numerical framework utilized in the
present investigation (Sec. 5.2) as well as the simulation setup (Sec. 5.3). The description and
nomenclature herein follows closely Sauer et al. (2014). Therefore, we refer to Sauer et al. (2014)
for details on the membrane kinematics in curvilinear coordinates as well as on the constraint
formulation. For an introduction to the nonlinear finite elements and computational contact
algorithms we refer to the textbooks by Wriggers (2008, 2006).

5.1 Governing equations

The present investigation deals with the partial wetting on substrates by sessile droplets,
represented by a liquid membrane, on a rigid substrate. The governing equations are non-
dimensionalized using the initial droplet radius, R◦

0, the density of water, ρ◦w, the liquid-gaseous
interfacial tension, γ◦LG, and the gravitational acceleration, g =̂ (0, 0, g◦)T, where (·)◦ denotes
dimensional quantities. The Bond number is defined as Bo = g◦ ρ◦w R

◦2
0 /γ

◦
LG and sets gravita-

tional and surface tension effects into relation.

The nonlinear deformation of an incompressible, liquid membrane is described by the following
equation following from the balance of linear momentum (strong equilibrium form)

tα;α + f = 0 , (27)

where tα = σ aα denotes the internal traction with aα, α = 1, 2 being the contra-variant base
vectors of the tangent plane at a specific location on the membrane, and σ = σαβaα ⊗ aβ is
the Cauchy stress tensor considered to be symmetric and aα the co-variant basis of the tangent
plane. Here f = fα a

α + pn is a distributed surface force where fα is the co-variant in-plane
component of f and p is the out-of-plane pressure acting on the membrane.
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The droplet is assumed to be in a state of hydrostatic equilibrium and is therefore represented by
a liquid membrane under internal hydrostatic pressure at constant volume (volume constraint).
The volume is constrained due to assuming the liquid to be incompressible. The pressure is
decomposed in its hydrostatic part, ph, and its part due to the volume constraint, pv,

p = ph + pv = ρw g · x+ pv , (28)

where ρw is the density of water and x the position vector in 3D space. The value of the
volumetric pressure, pv, is the constant datum pressure at the origin.

The liquid membrane is subject to the usual Dirichlet and Neumann boundary conditions,

u = u on ∂uS , t = t on ∂tS (29)

on the membrane boundary ∂S = ∂uS ∪ ∂tS to close the problem, where u denotes the mem-
brane displacement.

The material properties of the liquid membrane are governed by the constant isotropic surface
tension γij , such that the membrane stress becomes

σαβ = γij δ
α
β , (30)

with δαβ being the Kronecker symbol.

5.2 Numerical methods

In this section the numerical method is presented, which is used throughout the present inves-
tigation.

The droplet (and its deformation) is represented by a flexible, liquid membrane in the present
investigation. To this end, the weak form of Eq. (27) (see Sauer et al. (2014) for details) is dis-
cretized using quadratic Lagrange finite elements. The liquid membrane is stabilized in-plane
following Sauer (2014) (stabilization scheme ‘P’). The simulations are load-driven by sequen-
tially increasing the gravitational load, g, and the contact line force, qc, to its maximum value
and solving for the quasi-static equilibrium deformation at every load increment. The liquid
droplet is thereby subject to a volume and contact constraints. Its fluid phase in the interior
is represented by the hydrostatic pressure distribution (Eq. (28)) acting on the membrane sur-
face. The resulting linear system of equations is solved using the Newton-Raphson iteration
(which implies solving a linear system at each iteration step) subject to boundary and symmetry
conditions, see Sec. 5.3.

The contact between the liquid droplet and the rigid infinite half-space is modeled frictionless.
The contact pressure is thereby determined by a penalty regularization based on the classical
contact constraint, see Sauer (2014) for details.

5.3 Simulation setup

Fig. 4 shows the simulation setup used throughout the present investigation at initialization.
The droplet, represented as a liquid membrane, is in contact with a rigid, infinite half-space
with its surface located at z = −R0. The initial droplet radius is R0, the droplet is represented
by one quarter of a sphere exploiting thereby the following symmetry conditions to increase the
computational efficiency of the simulations,

ux = 0 at x = 0 , uy = 0 at y = 0 . (31)
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Figure 4: Simulation setup. Initial configuration of the droplet. Rigid substrate (half-space) indicated
in grey, either homogeneous or heterogeneously patterned as indicated in Fig. 1. Gravity acting in the
negative z-direction indicated by the vertical arrow.

The initial volume of the droplet, V0 = 1/3πR3
0, is kept constant throughout the simulations

(volume constraint). The gravitational pull acts in negative z-direction, g =̂ (0, 0,−g)T. The
contact angle, θc, is varied in the range [45◦, 150◦], the Bond number, Bo, in the range [0, 5]
and the strength of the chemical contamination, C, in the range [0, 2].

The simulations run with the total number of nel = 12, 352 quadratic elements, leading to a total
number of nno = 24, 833 nodes. The total number of elements contains membrane elements,
representing the liquid droplet, contact surface elements, and contact line elements. The contact
line elements, situated at the equator of the droplet, allow for imposing the contact force qc

introduced in Eqs. (10) & (11). The total number of degrees of freedom is ndof = 74, 500. The
grid resolution is sufficiently high to guarantee accurate, grid-independent numerical results.
The load-stepping is chosen dynamically to accelerate the simulations and to reduce the turn-
around time per parameter set (θc, Bo, C).

6 Numerical results

In this section we present the numerical results obtained by applying the numerical framework
introduced in Sec. 5 to the case of wetting on chemically contaminated substrates. We will
present results for the case of zero gravity and chemically heterogeneous substrates (Bo =
0, C 6= 1) in Sec. 6.1 and will extend the analysis to Bond numbers Bo > 0 in Sec. 6.2. Wetting
scenarios are considered where the entire triple phase contact line is affected by the chemical
heterogeneity (see Fig. 1). Comparisons to analytical results are made where possible and the
validity of the mapping based on the predicted contact angle deviation is shown. Furthermore,
we will show the applicability of the numerical approach to generalized chemical contaminations,
where only some part of the triple phase contact line is affected (Sec. 6.3).

6.1 Axially patterned substrates in the absence of gravity (Bo = 0)

The advantage of investigating the wetting of droplets on rigid substrates in the absence of
gravity, i.e. for the Bond number Bo = 0, is the availability of analytical results for the wetting
radius, r, the wetting length, L, and the droplet height, h, at the hydrostatic equilibrium
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state, which are used as an exact benchmark in the present investigation. In the absence of
gravity (and C constant in r and φ), the droplets form spherical caps (de Gennes, 1985). The
well-known solution for the droplet radius, r(θc), for Bo = 0 at the equilibrium state is

r(θc) = R0 ·
(

4

2 + cos3 θc − 3 cos θc

) 1
3

, (32)

with R0 the initial droplet radius and θc the equilibrium contact angle. The droplet height,
h(θc), is then defined as

h(θc) = r(θc) · (1− cos θc) (33)

and the wetting length, L(θc), is

L(θc) = 2 · r(θc) · sin θc . (34)

In the presence of a chemical contamination of strength C = C(r) affecting the entire triple
phase contact line (axial pattern), the contact angle θc(r) at the triple phase contact line
changes according to Eqs. (9) & (15), respectively. Following from the change in the contact
angle, θc + ∆θ and θc + ∆θF, respectively, the shape of the droplet changes as well, assuming a
constant droplet volume and further that no contact line pinning takes place. The radius, r, the
wetting length, L, and the height, h, of the droplet may be calculated analytically by replacing
θc in Eqs. (32) - (34) with the modified value θc + ∆θ and θc + ∆θF, respectively, due to the
presence of the chemical contamination. This results in analytical expressions for the shape of
the droplet, which depend on the strength of the chemical contamination, C.

Fig. 5 shows the numerical results for the droplet height, h, and the wetting length, L, at
hydrostatic equilibrium and compares the results with the analytical solutions for the modified
contact angle, θc +∆θ, according to Eq. (9) and θc +∆θF according to Eq. (15). For the absence
of any chemical contamination (C = 1) the numerical results perfectly match the analytical
solutions according to Eqs. (33) & (34) re-verifying thereby the accuracy of the numerical
method, cf. (Sauer, 2014). The droplet height, h, increases for chemical contaminations C < 1
and decreases for C > 1 in accordance with the deviations of the contact angle, see Fig. 3, which
are predicted to be ∆θ > 0 for C < 1 and ∆θ < 0 for C > 1, respectively. For the wetting
length, L, the opposite trend is observed: chemical contaminations C < 1 lead to a decrease in
the wetting length while for C > 1 the spreading of the droplet is enhanced. Since the chemical
contamination affects the entire triple phase contact line, the wetting area, or the contact area
between the droplet and the rigid substrate, remains circular. The droplet shape is a spherical
cap due to the absence of gravity Bo = 0.

The analytical solutions modified according to the theory by de Gennes (1985), see Eq. (9)
above, show good agreement with the numerical results for small chemical contaminations 0.7 <
C < 1.3. For stronger chemical contaminations larger deviations between the numerical results
and the modified analytical solutions are observed reflecting the limitations of the theory by
de Gennes (1985). For very small and large equilibrium contact angles, θc, the analytical
solutions start to oscillate due to the unboundedness of the deviation, ∆θ, and a comparison to
the numerical results is not reasonable anymore.

Since the predicted deviation ∆θF derived from the perturbed force equilibrium analogy, Eq. (15),
is bounded for all 0◦ ≤ θc ≤ 180◦ the modified analytical solutions for the droplet height, h,
and the wetting length, L, show a monotonic behavior over the entire parameter range. The
agreement between the modified analytical solutions and the numerical results is nearly perfect,
independent of the strength of the chemical contamination, C, and the contact angle, θc. The
excellent agreement demonstrates the generality of the perturbed force equilibrium analogy,
Eq. (15), and verifies the numerical framework utilized.
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Figure 5: Numerical results for the droplet height, h, and the wetting length, L, for Bo = 0 (black).
The analytical predictions according to Eqs. (33) & (34) are calculated using (a,c) θc + ∆θ according
to Eq. (9) and (b,d) θc + ∆θF according to Eq. (15) (blue). The analytical result in the absence of any
contamination, (C = 1), is plotted in red. The strength of the contamination varies in C = [0, 0.2, . . . , 2],
which is indicated by the black arrow. Lines with identical symbols correspond to each other.

6.2 Axially patterned substrates in the presence of gravity (Bo 6= 0)

In this section, we extend the numerical analysis presented in Sec. 6.1 to the general case of
the presence of gravity (0 < Bo ≤ 5). The applicability of the contact angle deviation ∆θF

predicted by the force equilibrium analogy (Eq. (15)) to results in the presence of gravity is
demonstrated.

Fig. 6 depicts the numerical results for the droplet height and the wetting length for Bo =
{1, 2, 5}. For identical contact angles, θc, the droplet height is lower and the wetting length
is larger in the presence of gravity compared to the case Bo = 0. As expected from the
results discussed in the previous section (Sec. 6.1), the droplet height decreases for chemical
contaminations C < 1 and increases for C > 1, while for the wetting length the trend is
opposite. In the presence of a chemical contamination (C 6= 1), the numerical results for an
imposed contact angle θc can be shifted by the predicted contact angle deviation ∆θF (Eq. (15)),
such that they match the results for the case of an absence of any chemical contamination:

∀ θc ∈ [0◦, 180◦], C,Bo ∈ R+
0 :

{
h(θc + ∆θF, C,Bo) = h(θc, C = 1, Bo) ,

L(θc + ∆θF, C,Bo) = L(θc, C = 1, Bo) .
(35)
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Figure 6: Numerical results for the droplet height, h, and the wetting length, L, for Bo = {1, 2, 5}
(black, left-to-right) for C = [0, 0.2, . . . , 2]. The strength of the contamination increases in the direction
of the black arrow. The analytical solution for Bo = 0, C = 1 is plotted in red, the numerical results
for Bo = {1, 2, 5}, C = 1 are plotted in green. The blue lines show the numerical results shifted by ∆θF
according to Eqs. (15) & (35). Lines with identical symbols correspond to each other.

The numerical results in the presence of a chemical contamination (C 6= 1) shifted according to
Eqs. (15) & (35) coincide with the results obtained in the absence of any perturbation (C = 1).
It is concluded from this observation that in the case of a chemical contamination affecting the
entire triple phase contact line (axial pattern) the shape of a droplet wetting a rigid substrate
may be calculated based on theoretical predictions, provided the wetting state on a perfectly
homogeneous substrate (C = 1) is known.

Fig. 7 shows the results for the dimensionless shape parameters X,Y introduced in Yonemoto
and Kunugi (2014):

1 =
2πr2

hV

γLG(1− cos θc)

ρwg︸ ︷︷ ︸
X

− 2πr

V

γLG sin θc

ρwg︸ ︷︷ ︸
Y

. (36)

For an increasing initial equilibrium contact angle, θc, the shape factors X and Y decrease.
For strong chemical contaminations the shape parameters are significantly smaller (C < 1), or
larger (C > 1), as for the case of a chemically homogeneous substrate. The observed change
in the shape parameters is larger for X than for Y because of the stronger impact of the
chemical contamination on the wetting length compared to the droplet height (see Fig. 6)
and its quadratic contribution in the enumerator of X, see Eq. (36). Applying the mapping
introduced in Eqs. (15) & (35) to the results for X and Y for C 6= 1 obtained by numerical
simulations, we find coincidence with the results for C = 1 in the case of a homogeneous
substrate. This result gives further evidence of the generality of the mapping. The effect of a
chemical contamination C > 1 decreases for an increasing Bond number because of the relatively

14



 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0  2  4  6  8  10  12  14

Y

X

θc=45
θc=60
θc=75
θc=90

θc=105
θc=120
θc=135
θc=150

(a) Bo = 1

 0

 0.5

 1

 1.5

 2

 0  1  2  3  4  5  6  7  8  9

Y

X

θc=45
θc=60
θc=75
θc=90

θc=105
θc=120
θc=135
θc=150

(b) Bo = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7

Y

X

θc=45
θc=60
θc=75
θc=90

θc=105
θc=120
θc=135
θc=150

(c) Bo = 5

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0  0.5  1  1.5  2  2.5  3  3.5  4

Y

X

Numerical results
Yonemoto and Kunugi

(d) Bo = 1

 0

 0.5

 1

 1.5

 2

 0  0.5  1  1.5  2  2.5  3  3.5  4

Y

X

Numerical results
Yonemoto and Kunugi

(e) Bo = 2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.5  1  1.5  2  2.5  3  3.5  4
Y

X

Numerical results
Yonemoto and Kunugi

(f) Bo = 5

Figure 7: Numerical results for the non-dimensional shape parameters X and Y as defined in Yonemoto
and Kunugi (2014) for different initial contact angles θc. (a-c) The numerical results for Bo = {1, 2, 5}
and varying C are plotted in black, the results for C = 1 are plotted in green. The strength of the
contamination varies in C = [0, 0.2, . . . , 2], which is indicated by the black arrow. (d-f) The blue symbols
show the numerical results shifted by ∆θF according to Eqs. (15) & (35). The analytical solution
Y = X − 1 of Yonemoto and Kunugi (2014) is plotted in red.

minor change in the wetting length (or wetting radius) compared to the homogeneous case. The
relative increase in Y for a varying chemical contamination C shows a similar but weaker trend.
The agreement of the results with the wetting model of Yonemoto and Kunugi (2014) in the
absence of any chemical heterogeneity is good with a slight trend towards smaller deviations
for larger Bond numbers. The observed deviations are in the same order of magnitude as the
differences between experimental results and the model predictions reported in Yonemoto and
Kunugi (2014, esp. Fig. 4). The trend towards smaller deviations for larger Bond numbers found
in the present investigation may be explained by the model’s approximation of the gravitational
point with a height average. This approximation becomes exact for more pancake-like shaped
droplets, i.e. large Bond numbers, which is reflected by the stronger agreement between the
model and the present results.

In the absence of any chemical contamination (C = 1) the 3D shapes of the droplets are more
and more pancake-shaped compared to the caps observed in the absence of gravity (Bo = 0)
as expected (not shown for brevity). The chemical contamination has the same effect on the
wetting behavior of the droplet as for the case of Bo = 0. The wetting area remains circular due
to the contamination acting on the entire triple phase contact line (axial pattern), in contrast
to the observations made in Sec. 6.3 (axial-radial pattern).
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6.3 Axially-radially patterned substrates (Bo = 1)

In this section the chemical contaminations are applied to parts of the triple phase contact line
only. The scenarios correspond thereby to the cases depicted in Fig. 1(b,d,e). The contami-
nations applied affect only some part of the triple phase contact line 0 ≤ φ ≤ Φp, where Φp

defines the part of the contact line being affected:

C(φ) :=

{
6= 1 for 0 ≤ φ ≤ Φp ,

= 1 else .
(37)

Here, the angle Φp is defined for the initial droplet configuration depicted in Fig. 4. Therefore,
the part of the triple phase contact line being affected by the wettability change does not
change during the simulation but may stretch or compress due to contact line deformation. As
a consequence, the actual patch angle, φp, may be larger for contaminations C � 1 and smaller
for contaminations C � 1, respectively. As discussed below, this effect may be of importance
for strong contaminations C. Nevertheless, good agreement to results reported in literature is
found as shown in Fig. 9(e).

The larger Φp, i.e. the part of the contact line affected by the contamination, the stronger the
increasing (C < 1) or decreasing effect (C > 1) on the droplet height. The limiting cases are
thereby the absence of any chemical contamination (Φp = 0) and a fully affected contact line
Φp = 90◦ already discussed in Sec. 6.2. Fig. 8 shows top-view plots of the droplet radius at
equilibrium state, i.e. the shape of the wetting area. Depending on the type of contamination,
the equilibrium contact angle increases or decreases and the wetting radius is smaller or larger,
respectively, compared to the case of a homogeneous substrate. Since the triple phase contact
line is affected only partially by the contamination, the wetting area is not circular anymore
and the wetting radius depends on the circumferential coordinate φ. The larger Φp and C
the stronger the deviation from the circular wetting area observed for the homogeneous case
(C = 1). For moderate chemical contaminations C = 1 ± 0.2, the wetting area is ellipsoidally
shaped, with the shorter axis aligned with the x-axis for C < 1 and with the y-axis for C > 1,
respectively. For stronger chemical contaminations, the deformation of the wetting area is
obviously stronger and a saddle or shoulder develops in the vicinity of φ = Φp comparable to
observations reported in Dupuis and Yeomans (2004).

In the vicinity of φ = φp the apparent contact angle, θapp, changes from the value θc + ∆θF

to the initially set value θc, which is shown exemplarily in Fig. 8(f) for the case of Φp = 45◦,
θc = 105◦ and C = 1.6. Since the patch angle Φp is defined in the initial configuration at t = 0
the actual patch angle φp is larger than Φp due to contact line stretching and the contact angle
transition takes place at a location slightly off the initial patch border. The change in the patch
size is approximately +1.5◦ and can be neglected compared to the initial patch size Φp = 45◦.
This observation can be generalized: the contact line stretching (or compression) plays a minor
role for moderately strong chemical contaminations and leads to significant changes in the patch
size for very high/low values of C only (with a stronger effect for high values compared to low
values of C). While the relative change in the patch size is small for large initial patch angles
(independent of C), it is obviously larger for small values of Φp and strong heterogeneities as
shown in Fig. 10.

The change in the apparent contact angle takes place in an abrupt manner corresponding
to the sharp transition of the wetting properties on the chemically heterogeneous substrate.
This observation is in agreement with numerical findings reported in Buehrle et al. (2002),
who showed that the gradient of the apparent contact angle is independent of ∆θF for small
wettability contrasts. Furthermore, the authors found that the gradient of the apparent contact
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Figure 8: (a-e) Results for r(φ) for Bo = 1 (black) in the presence of an axially-radially patterned
chemical contamination with Φp = {5.625, 11.15, 22.5, 45, 67.5}[◦] and an initial contact angle θc = 105◦.
The analytical solution for Bo = 0, C = 1 is plotted in red, the numerical results for Bo = 1, C = 1 are
plotted in green. The strength of the contamination varies in C = [0.4, 0.6, . . . , 1.6], which is indicated by
the black arrow. The dashed black line indicates the initial patch angle Φp. (f) Result for the apparent
contact angle θapp(φ) for Φp = 45◦, θc = 105◦ and C = 1.6. The dashed red line marks the initial contact
angle θc = 105◦, the green line θc + ∆θF according to Eq. (15).

angle is stronger for a smaller contact line tension supporting the present observations even
further since the contact line tension is zero here.

As already mentioned by Iliev and Pesheva (2003), the contact angle change at the patch borders
is highly sensitive to the physical mechanism of contact line pinning. In the present investigation
we made similar observations, namely that the contact line in the direct vicinity of a change
in the substrate’s wettability properties aligns with the patch borders. The part of the triple
phase contact line being aligned with the patch borders shows apparent contact angles θc ≤
θapp ≤ θc + ∆θF as expected. The contact angle transition is accompanied by slight gridpoint-
to-gridpoint oscillations, which can be minimized by increasing the spatial resolution. The
result for the apparent contact angle verifies the capabilities of the utilized contact-mechanical
approach to properly represent the wetting physics in the presence of heterogeneous substrates.

In the following the effects of a radially-patterned substrate on the droplet shape are investigated
and compared to results presented in the previous paragraphs as well as results reported in the
literature. In contrast to the results in Secs. 6.1 & 6.2 the pattern of the substrate is now defined
as

C :=

{
6= 1 for (i− 1)Φp − Φp

2 ≤ φ ≤ iΦp − Φp

2 , i = 1, 3, . . . , 90◦

Φp
+ 1 ,

= 1 else
(38)

resulting in a circumferentially alternating wettability pattern (dartboard pattern). The exam-
ple for Φp = 5.625◦ is shown in Fig. 10. This study additionally shows the capabilities of the
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Figure 9: (a-d) Results for r(φ) for Bo = 1 (black) in the presence of a dartboard-patterned chemical
contamination with Φp = {5.625, 11.15, 22.5, 45}[◦] and an initial contact angle θc = 105◦. The analytical
solution for Bo = 0, C = 1 is plotted in red, the numerical results for Bo = 1, C = 1 are plotted in
green. The strength of the contamination varies in C = [0.4, 0.6, . . . , 1.8, (2.0)], which is indicated by
the black arrow. The grid-lines correspond to the initial patch borders. (e) Quantitative comparison
between results by Iliev and Pesheva (2003) (green) and current results (black).

numerical method utilized in the present investigation.

Due to the radially-patterned nature of the chemical heterogeneity the part of the triple phase
contact line being affected is approximately identical for different values of Φp. Therefore, the
results for the droplet height do not change significantly but show a slight trend towards smaller
values of h for larger angles Φp at constant chemical contaminations C (not shown for brevity).
Compared to the results for the radially-patterned substrate according to Eq. (37) discussed in
the previous paragraphs the effects of the contamination for a substrate according to Eq. (38)
is stronger for identical values of Φp. This is due to the repeated alternation of the substrate’s
wetting properties in the circumferential direction leading to a larger droplet’s contact area
affected by the substrate heterogeneity.

The larger the contamination angle Φp the stronger the triple phase contact line deviation (at
constant C) from the circular shape observed in the absence of any contamination, see Fig. 9(a-
d). The circular shape of the wetting area is maintained for the dartboard-patterned substrate
with a superimposed wave-like modulation in the circumferential direction. The wave-length
of the modulation is thereby λ = 2φp in general and corresponds to the substrate’s pattern.
The contact line deformation as well as the 3D shape of the droplets depicted in Fig. 10 is
in qualitative agreement with results reported in Dupuis and Yeomans (2004) and Iliev and
Pesheva (2003). Furthermore, Fig. 9(e) shows a quantitative comparison of present results
for the wetting radius with results obtained by an energy minimization procedure (Iliev and
Pesheva, 2003). The agreement is generally good with slightly higher deviations on the patches
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with hydrophobic wetting properties. For the present results the apparent contact angle is
θapp = 89.5◦ on the hydrophobic patches, while for the results reported in Iliev and Pesheva
(2003) θapp ≈ 87◦ due to a relatively low resolution (computing power restrictions at that
time). The deviation in the apparent contact angle leads to a larger wetting radius compared
to the present results, which is a physically intuitive consequence. In contrast, on the substrate
patches with a hydrophilic coating the apparent contact angle is θapp = θc+∆θF ≈ 40.2◦ for the
present results and θapp ≈ 40.7◦ for the reference results (Iliev and Pesheva, 2003) and nearly
no deviations are observed for the wetting radius.

(a) C = 0.4

(b) C = 2

Figure 10: Deformation of the droplet at the final state of the wetting process for a dartboard-patterned
chemical contamination C = {0.4, 2} for Bo = 1, Φp = 5.625◦ and an initial contact angle θc = 105◦.
The size of the dartboard-patterns changes by ±1.3◦ during the wetting process. Left side: perspective
view, right side: bottom (top right) and top (bottom right) view.

7 Summary and conclusion

The partial wetting of droplets on rigid, chemically heterogeneous/chemically contaminated
substrates is investigated. A new computational contact-mechanical approach based on a Finite
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Element Method (FEM) is utilized representing the droplet as a deforming liquid membrane
under hydrostatic conditions. Numerical results are presented for Bond numbers Bo ≤ 5 and
chemically patterned (radially and/or circumferentially alternating) as well as locally chemically
contaminated substrates. The numerical results presented for the shape of the droplet wetting a
chemically heterogeneous substrate are in good agreement with analytical results in the absence
of gravity (Bo = 0) and any contamination, and with numerical results in the absence of any
contamination for (0 < Bo ≤ 5), when transformed using a mapping based on the predicted
change in the apparent contact angle. The mapping presented is derived via a perturbed
force equilibrium analogy at the triple phase contact line predicting the contact angle change
in the presence of a arbitrarily strong chemical contamination. The predicted change in the
apparent contact angle is in agreement with the analytical theory by de Gennes (1985) for
small perturbations and the modified Cassie’s law (Cassie, 1948). The transformation allows
for predicting the droplet’s shape on chemically heterogeneous substrates for the case the entire
triple phase contact line is affected by the contamination, provided the droplet shape is known
for the case of a perfectly chemically homogeneous substrate. Thereby, the perturbed force
equilibrium analogy allows for arbitrarily strong chemical contaminations extending the theory
by de Gennes (1985). Additionally, the transformation may be applied to predict the droplet
shape on a perfectly homogeneous substrate with contact angle θc = θA, provided the droplet
shape is known for the wetting on another perfectly homogeneous substrate with θc = θB 6= θA

for arbitrary Bond numbers.

The contact-mechanical approach is applied to a variety of chemical heterogeneities including
axially patterned as well as radially patterned substrates, where no analytical theory is available
anymore, demonstrating its robustness and flexibility. The results for the 3D droplet shape as
well as for the wetting length, wetting area and droplet height is in agreement with results
reported in literature.

Having demonstrated the capability of the newly developed numerical framework to accurately
simulate the partial wetting process on rigid, chemically heterogeneous substrates in the present
contribution, an extension is planned in a follow-up study towards the investigation of randomly
chemically as well as spatially heterogeneous substrates. Furthermore, it is intended to extend
the analytical mapping based on the perturbed force equilibrium analogy to the case of spatially
heterogeneous substrates in analogy to de Gennes (1985).
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