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Abstract: Metal casting and polymer molding are widely used for the economical shape pro-
cessing of complex geometries. In these manufacturing processes, a liquid melt (metal, mineral
or synthetic) is filled into a mold with a cavity of the desired shape. Cooling and solidification of
the melt results in a product with almost the same shape as the cavity. Numerical simulations
can be employed to increase the accuracy of the process. To this end, a boundary element
method for Stokes flow and a finite element formulation for liquid membranes are investigated
in this work.

1 Introduction

The boundary element method (BEM) is suitable to solve partial differential equations (PDE).
The BEM reduces the dimension of a problem, i.e. boundary discretization and integration is
sufficient to solve a domain problem. A necessary condition for the applicability of BEM is the
existence of a Greens’s function for the particular PDE. For instance, BEM can solve Laplace’s
and Poisson’s equation (heat conduction, electrostatics and potential flow), the Helmholtz equa-
tion (acoustic, electromagnetic and fluid waves) and the biharmonic equation (linear elasticity
and Stokes flow). We focus on BEM for Stokes flow to model the flow within the melt. Under
the assumption of low Reynolds numbers, which is valid for creeping flow, the inertial fluid forces
are negligible. Therefore, the Naver-Stokes equations reduce to the linear Stokes equations.
An efficient finite element (FE) formulation for liquid membranes has been presented by Sauer
et al. (2014). Here it is used to model the deformation of the melt surface itself as well as
the interaction between melt and cavity. Volume discretization is also avoided in Sauer et al.
(2014). For both methods, the computational as well as the meshing effort is highly reduced
compared to volumetric FE.

2 FE formulation for liquid membranes

We focus on pure membranes that do not resist bending and out-of-plane shear. An FE-
formulation for those membranes can be found in Sauer et al. (2014). The authors present a
membrane constitutive model that models isotropic surface tension and is therefore suitable to
describe liquid membranes under hydrostatic conditions. Mechanical contact at the membrane
surface can be modeled by enforcing a contact constrain and considering contact contributions
to the surface force. A common approach to solve the constrained optimization problem nu-
merically is the penalty method which is used in Sec. 5.
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3 BEM for three-dimensional Stokes flow

In creeping fluid flow (Reynolds number Re� 1) convective inertial forces are negligible small
compared to viscous forces. Further assuming small accelerations, the motion of an incom-
pressible Newtonian fluid in domain Ω with boundary Γ can be described by the steady Stokes
equation

−∇p+ η∇2v + ρ b = 0 in Ω, (1)

where pressure and velocity of the creeping fluid are denoted by p respectively v, while η denotes
its viscosity and ρ its mass density and b denotes a body force. (1) can be transformed into the
boundary integral equation (BIE) (see e.g. Pozrikidis (2002))

c(x) vi(x) +
1

8π

∫
Γ
Tijk(x− y) vj(y)nk(y) dΓy −

1

8π η

∫
Γ
Gij(x− y) tj(y) dΓy = 0, (2)

where summation is implied over j and k. n denotes the outward unit normal, while t denotes
the boundary traction t = σn with stress tensor σ. The Green’s function for velocity and
traction can be obtained by

Gij(x̂) =
x̂i x̂j
r3

+
δij
r

Tij(x̂) = −6
x̂i x̂j x̂k
r5

, (3)

with x̂ = x − y and r = ‖x̂‖. The face factor c is chosen as the fraction of the solid angle.
For x ∈ Γ of classC1, it yields c = 0.5. Green’s function G and T are singular for r = 0 which
requires special care with respect to integration

4 Numerical validation

The FE-formulation for liquid membranes (Sauer et al., 2014) has been sufficiently validated
in several applications, including liquid-solid contact (e.g. Sauer et al. (2014); Sauer (2014,
2016)). For the sake of brevity, we focus on the validation of three-dimensional BEM for Stokes
flow here. We investigate two simple test cases, whose analytic solutions are available in the
literature (e.g. Chwang and Wu (1975)). Test case 1: A solid sphere (radius R = L0) is
surrounded by a fluid of velocity v = v0 [cos θ, sin θ, 0]T with θ = 4

9 π. Test case 2: Flow
between two spheres (Rin = L0, Rout = 2L0) that are rotating in opposite direction around
the z-axis with angular velocities ωin = ω0 [0, 0, 1]T and ωout = −ωin. A bi-quadratic NURBS
patch is used to discretize a sphere efficiently (number of control points n = 9). Evaluating
the BIE (2) at a single point leads to d = 3 equations with dn unknowns. To obtain a system
of linear equations with the same number of equations and unknowns, the BIE is collocated
at n collocation points xa ∈ Γ for a ∈ {1, .., n}. Collocation points are chosen according to
the Greville abscisssae (see e.g. Greville (1964)). Due to the continuity of the surface, the face
factor yields c(xa) = 0.5. Numerical integration is carried out by using standard Gauss-Legendre
quadrature on integration elements. These elements are obtained by splitting the NURBS knot
spans at the values of the Greville abscissae. Thus, Green’s functions (3) are only singular at
the boundaries of these elements. While the number of elements is kept constant, the number
of quadrature points is systematically increased and the resulting drag (test case 1) respectively
moment (test case 2) is compared to analytical solutions. Fig. 1(a-b) show the relative error
of the particular solution against the total number of quadrature points, while the velocity
component vy in the x-z plane is depicted in Fig. 1(c) for test case 2. For both test cases,
the numerical result converges to the analytical solution with a constant rate. Nevertheless, a
rather large number of quadrature points are required to obtain very accurate solutions. Special
quadrature rules for singular integration might increase the computational efficiency.
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Figure 1: Validation of BEM for Stokes Flow: test case 1: Relative error of drag F (a), test case 2:
relative error of moment M (b) and velocity vy in the x-z plane (c)

5 Application to mold filling processes

FE membranes and BEM for Stokes flow can be used to model mold filling processes efficiently.
Here, the deformation of a liquid melt under hydrostatic conditions is solved with the FE
formulation from Sauer et al. (2014). The mechanical contact between melt and cavity is
incorporated with the penalty method. The resulting velocity field can then be determined
with the BEM where FE deformations serve as Dirichlet boundary conditions. The magnitude
of velocity at proceeding time steps is shown in Fig. 2.

Figure 2: Application to a mold filling process: magnitude of velocity ‖v‖ at proceeding time steps of
a filling process
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