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Abstract: Simulation of dynamic adhesive peeling problems at small scales has attracted little attention
so far. These problems are characterized by a highly nonlinear response. Accurate and stable time
integration schemes are required for simulation of dynamicpeeling problems. In the present work, a
composite time integration scheme is proposed for the simulation of dynamic adhesive peeling problems.
It is shown through numerical examples that the proposed scheme remains stable and also has some
gain in accuracy. The performance of the scheme is compared with two collocation-based schemes,
i.e. Newmark scheme and Bathe composite scheme. It is shown that the proposed scheme and Bathe
composite scheme perform equally. However, the proposed scheme adds very little to the computational
cost of Newmark scheme. Through a numerical simulation of the peeling of a gecko spatula from a rigid
substrate it is shown that the proposed scheme and the Bathe composite scheme are able to simulate the
complete peeling process for given time step whereas the Newmark scheme diverges. It is also shown
that the maximum pull-off force is within the range reportedin the literature.

Keywords: Time integration; collocation-based schemes; composite scheme; contact mechanics; peel-
ing; gecko adhesion.

1 Introduction

The focus of the current work is on modeling and simulation ofpeeling problems that occur at small
length scales by taking into account dynamic effects. Dynamic peeling simulation problems at such
small scales belong to the class of contact problems where the contact forces can be derived from a
potential formulation like those based on Van der Waals forces. An example is the adhesion and peel-
ing of a gecko spatula [Sauer (2010)]. These problems are highly nonlinear in nature. Simulation of
these problem requires accurate time integration schemes.To the best of authors knowledge, very little
literature exists on dynamic simulation of peeling problems at small scales, see e.g. [Sauer (2010)].

A number of time integration schemes exist in the literaturewhich can be classified into two different
categories:collocation-based schemesandenergy-momentum conserving schemes[Krenk (2009)]. In
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collocation-based schemes, the equation of motion is satisfied at selected points in the time interval.
In contrast, for energy-momentum-conserving schemes, theequation of motion is explicitly integrated
over the time interval. The Newmark scheme [Newmark (1959)], which is a parameter-based colloca-
tion based scheme, may induce significant errors in the numerical solution which then leads to diver-
gence of the numerical solution in case of nonlinear problems. Recently, a parameter-free collocation-
based composite time integration scheme has been proposed by Bathe and co-workers [Bathe (2007);
Bathe and Baig (2005)] with the objective to conserve energy. In a later work, see [Bathe and Noh
(2012)], it is shown that the scheme dissipates energy for spurious higher modes. Alternatively,energy-
momentum conserving schemeshave been developed with the idea of conserving properties of the under-
lying problem i.e., momentum and energy. Energy-momentum conserving schemes were first applied to
elastodynamics by Simo and Tarnow (1992). They presented a new methodology for the construction of
time integration algorithms, called energy-momentum conserving algorithms (EMCA), that inherit, by
design, the conservation laws of momentum and energy. Later, Betsch and Steinmann (2001) used a non-
standard quadrature formula, based on the discrete gradient method of Gonzalez (1996), for studying the
energy conservation in nonlinear elastodynamics. Recently, Hesch and Betsch [Hesch and Betsch (2009,
2010)] have developed a new energy-momentum conserving scheme by extending the discrete gradient
method of Gonzalez (1996) and the one-step method of Betsch and Steinmann (2001) for contact-impact
problems using the mortar finite element method.

Recently, Gautam and Sauer (2013) have proposed an energy-momentum conserving time integration
scheme for dynamic adhesive contact problems based on the concept of the discrete gradient. This
scheme leads to major accuracy gains in conserving the energy over the collocation based schemes.
However, the methods based on discrete gradient approach suffer from some drawbacks. First, the
evaluation of the discrete gradient, specially for the bulk, requires large computational time. Also,
the discrete gradient is specific to the material propertiesthrough strain energy density function. This
restricts the application of a scheme based on discrete gradient to different materials. Hence, applica-
tion of methods based on the discrete gradient approach is mostly restricted to small scale problems.
Instead, various collocation-based schemes like Newmark scheme [Newmark (1959)] and Bathe’s com-
posite scheme [Bathe (2007); Bathe and Baig (2005)] are still applied which ensure reasonable accuracy
without severely affecting the computational time. The objective of the present work is to propose a
composite time integration scheme, which does not suffer from the drawbacks mentioned previously
i.e., it can be applied to general materials and should not affect the computational time without affecting
the accuracy. Hence, in the present work, a composite time integration scheme is proposed for dynamic
adhesive contact problems which incorporates the intendedobjectives. The performance and accuracy of
the proposed scheme is compared with two class of collocation-based schemes i.e. the parameter-based
Newmark scheme [Newmark (1959)] and the parameter-free Bathe’s composite scheme [Bathe (2007);
Bathe and Baig (2005)] through two simple numerical examples i.e., interaction of a deformable ball
with a rigid surface and peeling of a deformable strip from a rigid substrate. It is shown that there is
gain in accuracy compared to collocation-based schemes andalso the computational cost in only slightly
higher compared to Newmark scheme. Finally, the peeling of agecko spatula pad from a rigid surface
is simulated using the proposed scheme and its performance evaluated in comparison with collocation-
based schemes. In particular, the computational time required for each scheme is also evaluated.

The remainder of this paper is structured as follows: Section 2 provides an overview of the adhesion
model used to describe adhesive contact between deformablebodies and also presents the finite el-
ement formulation. Section 3 first presents a brief discussion on the implementation of the colloca-
tion based schemes proposed by Newmark [Newmark (1959)] andBathe and coworkers [Bathe (2007);
Bathe and Baig (2005)]. Then, the proposed composite time integration scheme is presented. In Sec-
tion 4, results of two numerical examples: dynamic interaction of a deformable ball with a rigid surface
and peeling of a deformable strip from a rigid substrate are presented. Numerical results of dynamic
peeling of a gecko spatula from rigid surface are presented in the end. Section 5 concludes this paper.

2



2 Formulation

In this section, we first present the adhesion formulation employed in the present work followed by the
finite element formulation.

2.1 Adhesion formulation

Here, a brief overview of the adhesion formulation considered in the present work is presented which
is suitable to describe a large class of interaction mechanisms like classical contact with penalty and
barrier formulations, physical interaction formulationslike cohesive zone models as well as electrostatic,
gravitation, and Van der Waals interactions, see [Sauer andLorenzis (2013)]. According to the model,
the interaction between two deformable bodiesBk (k = 1, 2) is described by the contact interaction
energy

Πc =

∫
∂Bk

βs
k Φℓ dak , (1)

whereβs
k is the current surface density atxk ∈ ∂Bk, defined as the number of interacting particles per

current surface area, andΦℓ denotes the interaction potential between a particle atxk and the neighboring
body Bℓ (ℓ 6= k). The potentialΦℓ depends on the signed distancers between pointxk and surface∂Bℓ

i.e.,
rs(xk) :=

(

xk−xp
)

·np , (2)

wherexp is the closest projection point ofxk on ∂Bℓ andnp is the corresponding surface normal. Alter-
natively, Eq. (1) is expressed in the reference configuration as

Πc =
∫

∂B0k

βs
0k Φℓ dAk , (3)

whereB0k (k = 1, 2) denotes the reference configuration of the bodyk andβs
0k is the reference surface

density, expressed as the number of interacting particles per reference surface area. Here, we consider
the number of surface particles to be conserved during deformation such that

βs
kdak = βs

0k dAk = const. (4)

This assumption is reasonable for solids. The variation ofΠc, due to variations of configurationxk,
denotedδxk = δϕk, now becomes

δΠc,k =

∫
∂B0k

βs
0k

∂Φℓ

∂xk
·δϕk dAk =

∫
∂Bk

βs
k

∂Φℓ

∂xk
·δϕk dak . (5)

In this equation, we can identify the interaction force

Fk :=−∂Φℓ

∂xk
. (6)

The surface traction, in the current or reference configuration, is then identified as

tk = βs
k Fk, or Tk = βs

0k Fk . (7)

For suitable definitions ofΦℓ, one can consider various contact formulations [Sauer and Lorenzis (2013)].
In the present work, we focus on van der Waals adhesion for which we have

Φℓ :=
Φ0

Jsℓ

[

1
360

(

r0

rs

)8

− 1
6

(

r0

rs

)2
]

, rs > 0 . (8)
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Here,Φ0 andr0 are model constants andJsℓ = dak/dAk = βs
0k/βs

k characterizes the surface deformation.
The corresponding traction, using Eqs. (6) and (7), is givenby

Tk =
T0

Jsℓ

[

1
45

(

r0

rs

)9

− 1
3

(

r0

rs

)3
]

np . (9)

Here,T0, which describes the adhesive strength, is proportional toHamaker’s constantAH [Israelachvili
(1991)].

Remark:

1. In the present work, only frictionless normal contact is considered.

2. If one of the bodies is rigid for e.g., ifBℓ is rigid, thenJsℓ = 1.

3. It should be noted that although the contact potential (Eq. 8) and traction (Eq. 9) are smooth func-
tions of distance and time, spatial, and temporal discretization can lead to nonsmooth functions.
This will require spatial and temporal adaptivity to approximate smooth behavior.

2.2 Finite element formulation

The expression of the finite element equations associated with the contact traction given by (9) is now
simple to derive. For a general, three-dimensional finite element discretization of bodiesBk (k = 1, 2),
the expression for the equation of motion for dynamic problem is given by

Mü + f int + fc − fext = 0 , (10)

whereu is the displacement vector,u̇ is the velocity vector,̈u is the acceleration vector andM denotes
the consistent mass matrix. The vectorsf int, fc, andfext denote the internal, contact, and external forces
of the discretized system. In expression (10) superimposeddots denote derivative with respect to time.
The expression forM , f int, and fext can be found in standard texts, see eg. [Wriggers (2008)]. The
expression for the contact forcefc is obtained from the element contributionsfe

ck (e = 1, . . . ,nsel where
nsel is the total number of surface elements influenced by adhesion). The expression forfe

ck acting on the
nse surface nodes of the current surface elementΓe

k or the reference surface elementΓe
0k is given by

fe
ck = −

∫
Γe

k

NT
e tkdak = −

∫
Γe

0k

NT
e TkdAk , (11)

whereNe is given as
Ne = [N1I , N2I , . . . , NnseI ] , (12)

which is a [ndim × (ndim+nse)] dimensional matrix formed by thense surface shape functionsNI (I =
1, 2, . . . ,nse) of the surface element. Here,ndim ≤ 3 is the dimension of the Euclidean space occupied by
the reference configuration andI is an identity matrix of sizendim×ndim. In general, bothf int andfc may
depend on the displacement and velocity, i.e.,f int = f int (u, u̇), andfc = fc (u, u̇). However, in the current
work, we always considerfc = fc (u). Also, it is assumed that the internal force vectorf int = f int (u, u̇)
can be additively split into an elastic part and a viscous part that is linear inu̇ i.e.,

f int (u, u̇) = fel (u) + Cu̇ , (13)

whereC is the damping matrix. We consider Rayleigh damping in whichthe damping matrix can be
written as

C = α1M + α2Kel,0 , (14)

whereKel,0 denotes the constant stiffness matrix atfel = 0. In Eq. (14),α1, and α2 are mass and
stiffness proportional damping constants respectively. Hence, the equation of motion given by Eq. (10)
is obtained as

Mü + Cu̇ + fel + fc − fext = 0 . (15)
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3 Time Integration Schemes

The numerical solution of Eq. (15) requires integration in time for which suitable time integration
schemes are required. In the present section, we first present two collocation-based time integration
schemes. The first scheme is the Newmark scheme [Newmark (1959)] which is a parameter-based
scheme. The second scheme is the composite scheme proposed by Bathe and coworkers [Bathe (2007);
Bathe and Baig (2005); Bathe and Noh (2012)] which belongs tothe parameter-free family schemes.
Then, we present the details of the composite time integration scheme proposed in this work.

3.1 Parameter-based time integration scheme: Newmark scheme [Newmark (1959)]

The standard Newmark equations are given as

un+1 = un + ∆t u̇n +
∆t2

2

[

(1− 2β) ün + 2β ün+1] , (16)

u̇n+1 = u̇n + ∆t
[

(1− γ) ün + γ ün+1] , (17)

where∆t is the time step andβ andγ are the Newmark parameters. The accelerationün+1 is obtained
by substituting forun+1 andu̇n+1 in Eq. (10). In the present work, even though we consider a nonlinear
system, the values of the parametersβ andγ are chosen as 1/4 and 1/2 which correspond to an uncon-
ditionally stable scheme for the linear system with explicitly prescribed external loads. Substitution for
ün+1 from Eq. (16) in Eq. (10) leads to the force residual

fn+1
res = fn+1

el + fn+1
c − fn+1

ext + w0M
(

un+1 − un) − w1Mu̇n − w2Mün = 0 . (18)

Here, the constantsw0-w2 are given by

w0 =
1

β∆t2 , w1 =
1

β∆t
, w2 =

1
2β

− 1 . (19)

The residual given by Eq. (18) has to be solved using an iterative scheme to obtain the solution. In the
present work, Newton-Rapshon (NR) scheme is chosen for which corresponding tangent matrix is given
by

Kn+1 :=
∂fn+1

res

∂un+1 =
∂fn+1

el

∂un+1 +
∂fn+1

c

∂un+1 − ∂fn+1
ext

∂un+1 + w0M . (20)

The tangent matrix associated with the contact contribution fn+1
c is given by

Kn+1
c :=

∂fn+1
c

∂un+1 = −
∫

Γe
0k

NT
e

∂Tk

∂xk
NedAk . (21)

We refer to Sauer and Wriggers (2009) for detailed derivations and discussion. Once convergence is
reached, velocitẏun+1, and acceleration̈un+1 are computed using Eqs. (16) and (17).

Remarks: Takingγ > 1/2 andβ > γ/2 in the Newmark scheme introduces so-calledalgorithmic damp-
ing. However, this also damps out the physically relevant lowermodes and reduces the accuracy to first
order. Temporal integration schemes have been developed with a controllable numerical dissipation for
higher modes (see e.g., [Chung and Hulbert (1993); Krenk andHogsberg (2005)]). A detailed analysis
of energy conservation and dissipation in linear Newmark-type algorithms and theirα modifications is
discussed in Krenk (2006).
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3.2 Parameter-free time integration scheme: Bathe composite scheme [Bathe (2007);
Bathe and Baig (2005)]

This scheme has been proposed by Bathe and coworkers [Bathe (2007); Bathe and Baig (2005)]. The
scheme combines two distinct schemes to yield acomposite schemefor the numerical integration of
nonlinear dynamical system of equations. The approach usedin the scheme is to calculate the unknown
displacements, velocities, and accelerations by considering the time step∆t to consist of two equal sub-
steps of size∆t/2. For the first sub-step solution, the trapezoidal rule is used, and for the second sub-
step solution, the 3-point backward Euler formula is used. In the first sub-step, the nonlinear dynamic
equation (Eq. 10)3 is written at timetn+1/2 = tn+∆t/2. The equations of the trapezoidal rule are given
as

un+ 1
2 = un +

∆t
4

(

u̇n + u̇n+ 1
2

)

, (22)

u̇n+ 1
2 = u̇n +

∆t
4

(

ün + ün+ 1
2

)

. (23)

Combining Eqs. (10) attn+1/2 = tn+∆t/2, (22) and (23) leads to the force residual attn+1/2 which is
given by

f
n+ 1

2
res = f

n+ 1
2

el + f
n+ 1

2
c − f

n+ 1
2

ext +w4Mun+ 1
2 − M (w4un + 2w3u̇n + ün) = 0 , (24)

where the constantsw3 andw4 are given by

w3 =
4
∆t

, w4 =

(

4
∆t

)2

. (25)

The tangent matrix associated with the contact contribution f
n+ 1

2
c required for NR iterations follows sim-

ilar procedure as in Newmark scheme, see Sauer and Wriggers (2009) for details. Once NR convergence
is reached, velocitẏun+ 1

2 , and acceleration̈un+ 1
2 are computed using Eqs. (22) and (23). In the second

sub-step, the nonlinear dynamic equation (Eq. 10) is written at timetn+1 = tn+∆t. The equations of the
three-point Euler backward method are given as

u̇n+1 = w5un − w3un+ 1
2 + w6un+1 , (26)

ün+1 = w5u̇n − w3u̇n+ 1
2 + w6u̇n+1 , (27)

where the constantsw5 andw6 are given as

w5 =
1
∆t

, w6 =
3
∆t

. (28)

Combining Eqs. (10) attn+1 = tn+∆t, (26) and (27) leads to the force residual attn+1 which is given by

fn+1
res = fn+1

el + fn+1
c − fn+1

ext + w4Mun+1 − M
(

w0w3un+ 1
2 + w5un − w0u̇n+ 1

2 +

w2u̇n) = 0 , (29)

where the constantsw7 andw8 are given as

w7 =

(

3
∆t

)2

, w8 =
3

∆t2 . (30)

The tangent matrix associated with the contact contributions fn+1
c follows similar procedure as in New-

mark scheme, see Sauer and Wriggers (2009) for details. After convergence is reached velocityu̇n+1,
and acceleration̈un+1 are computed using Eqs. (26) and (27).

3In case of damping, we use Eq. (15) instead of Eq. (10).
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Remarks: This scheme, unlike Newmark scheme, has no parameter to choose or adjust. The method
is shown to be second order accurate and remains stable for large deformation and long time response.
Also, it has been shown recently, see [Noh et al. (2013)], to dissipate spurious higher modes which arise
because of the spatial discretization. A time step value below a certain threshold leads to no dissipation.

3.3 Proposal of a new composite time integration scheme

Next, we present a new composite time integration scheme. The system of second-order ordinary differ-
ential equations given by Eq. (15) are integrated over the time intervalT ∈ [tn, tn+1] to give the residual
momentum vector at timetn+1 as

pn+1
res

(

xn+1) = M
(

u̇n+1 − u̇n) + C(un+1 − un) +
∫ tn+1

tn
(fel + fc − fext) dt = 0 . (31)

The time integral corresponding to contact force vector in Eq. (31) can be computed using standard
Gaussian quadrature in time or by employing a nonstandard quadrature rule like the discrete gradient
method, see for e.g. Gautam and Sauer (2013). However, as mentioned in section 1, schemes based on
discrete gradient approach are restricted in application because: (a) they are specific to material prop-
erties through strain energy density function, and (b) the computation of the discrete gradient itself,
specially for the bulk, may become computational expensive. In the present work, we propose to inte-
grate the integrals in Eq. (31) separately. First, we propose to integrate the internal force vector using the
trapezoidal rule. Second, we observe that due to the highly nonlinear nature of the interaction potential,
see Eq.(8), an accurate computation of time integral corresponding to contact force in Eq. (31) is im-
portant. Hence, it is integrated using Gaussian quadraturewith large number of Gauss points. Also, the
Newmark scheme is combined with Eq. (31). This leads to a new composite time integration scheme.
Substituting foru̇n+1 using Eqs. (16) and (17) in Eq (31), we obtain

pn+1
res

(

xn+1) = w9M
(

un+1 − un) − w10Mu̇n + w11Mün+ C(un+1 − un)

+
∫ tn+1

tn
(fel + fc − fext) dt = 0 , (32)

where the constantsw9, w10, andw11 are given by

w9 =
γ

β∆t
, w10 =

γ
β
, w11 = ∆t

(

1− γ
2β

)

. (33)

Now, as proposed, the integral corresponding to the internal force is replaced using the trapezoidal rule.
Hence, ∫ tn+1

tn
fel dt =

∆t
2

(

fn+1
el + fn

el

)

. (34)

Finally, the tangent matrix needed for NR iterations is obtained as

Ln+1 :=
∂pn+1

res

∂xn+1 = w9M + C +
∆t
2

(

∂fn+1
el

∂xn+1

)

+
∂

∂xn+1

[∫ tn+1

tn
(fc − fext) dt

]

. (35)

Here, the integral for the internal forces is replaced by Eq.(34). In the present work, the number of
Gauss points for integration in time for the contact force and external force components in Eq. (31) is
taken to be 5.
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4 Numerical Examples

In the present section, first, the performance of the time integration schemes outlined in section 3 is
discussed using two simple problems i.e., interaction of a deformable ball with a rigid surface and
peeling of a deformable strip from a rigid substrate. Then, the performance of the schemes is discussed
through dynamic peeling simulation a gecko spatula from a rigid substrate. In the present work, the
material is modeled as an isotropic, nonlinear elastic Neo-Hooke material with Young’s modulusE and
the Poisson’s ratioν are taken as 2 GPa and 0.2 respectively. The density is taken as 1000 kg/m3. The
Neo-Hookean material model given by Zienkiewicz and Taylor(2005)

W =
µ
2
(trB− 3) − µlnJ +

Λ
2
(lnJ)2 (36)

has been considered. Here,B is the left Cauchy-Green tensor andJ =
√

detB. In the above expression,
µ andΛ are the Lamé constants.

In the present work, a normalized form of Eq. (7) is used. For normalization of Eq. (7), we first define

T̄k =
Tk

E0
, r̄s =

L0

rs
, (37)

whereE0 and L0 are the characteristic energy density (or stiffness) and length scale of the problem
respectively. The normalized equation corresponding to Eq. (7) is written using the normalization pro-
cedure discussed in Sauer and Wriggers (2009), which leads to

T̄k =

[

c1

r̄9
s
− c2

r̄3
s

]

np = T̄knp , (38)

where the constantsc1 andc2 are given as

c1 =
π

45γWγ9
L

, c2 =
π

3γWγ3
L

. (39)

The parametersγL = L0/r0 andγW = E0/W0, whereW0 = AH/2π2r3
0, characterize the scale and strength

of adhesion. We refer to Sauer and Li (2008) for detailed discussion onγL andγW. In the current work,
the value ofγL andγW are chosen as 2.5 and 25 respectively which correspond to the values found in
gecko adhesion [Sauer and Holl (2013)].

4.1 Interaction of a deformable ball with a rigid surface

First, the interaction of a deformable ball with a rigid surface is considered, see Figure 1. This example
has also been discussed in detail in Gautam and Sauer (2013).The diameter of the ball is taken as
D0 = 10 L0. Material damping is not considered. The ball is assumed to be released from rest. The
initial separation between the ball’s center and the rigid surface is taken asr initial = 7L0 + req where
req is the equilibrium distance corresponding to the interaction potentialΦℓ. The finite element mesh
consists of 48 four noded quadrilateral elements. The time step for the analysis is taken as 0.001T0

whereT0 is the characteristic time of the problem. No adaptive time stepping is considered. In the
present example, all the cases were run on the same machine for better comparison of the schemes.

Next, the variation of error in energy,∆E, and logarithmic norm of total angular momentumGn+1 with
time is shown in Figures (2(a)) and (2(b)). The error in energy ∆E is defined as

∆E := log10

[

En−E0

E0

]

, (40)
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Rigid surface

D0 = 10L0

Interaction potential : Φℓ

Poission′s ratio : ν = 0.2
Young′s modulus : E = 2 GPa

rinitial

Φℓ

Deformable ball

Figure 1: Initial configuration of a deformable ball interacting with a rigid surface. The diameter of the
ball is taken asD0 = 10L0, r initial = 7L0 + req. Here,req is the equilibrium distance corresponding to
the interaction potentialΦℓ. The ball is at rest att = 0.

whereE0 andEn are the energies at the start and at timet = tn respectively. The total angular momentum,
Gn+1, about the origin at timetn+1 is expressed as

Gn+1 =
nnode

∑
J=1

xn+1
J ×pn+1

J , (41)

where,xn+1
J andpn+1

J are the position vector and total linear momentum of nodeJ respectively. The
results of the scheme proposed by Gautam and Sauer (2013) arealso included. It can be seen that the
Newmark scheme diverges aftert ≈ 2.5T0. The error of the scheme proposed by Gautam and Sauer
(2013) is the lowest followed by the scheme proposed in the present work. However, the accuracy
of the proposed scheme is still two order of magnitude higherthan other collocation-based schemes.
The variation of norm of total angular momentum,‖Gn+1‖, with time shows that the Bathe composite
scheme and the proposed scheme perform equally well. However, the accuracy of the scheme proposed
in Gautam and Sauer (2013) is at-least 5 order of magnitude higher than the proposed scheme. However,
the momentum conservation properties of proposed scheme isbetter than Gautam and Sauer (2013). The
total computation time and computational time per increment is shown in Table 1. The computational
time per increment using Newmark scheme is 0.6150 seconds per increment where as it is 0.706 seconds
for the proposed scheme. The Bathe composite scheme requires 1.201 seconds per increment. The
reason is that in the Bathe composite scheme each increment is composed of two equal substeps leading
to more computational time. The scheme proposed Gautam and Sauer (2013) takes 8.560 seconds per
increment on the same machine.

Table 1: Computational time required for different schemes.
S. No. Numerical scheme Total time (sec) Time per increment (sec)

1. Newmark (1959) 3784 (until 2.65T0) 0.615
2. Bathe (2007) 12007 1.201
3. Proposed scheme 7054 0.706
4. Gautam and Sauer (2013) 42810 8.560
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(b) Norm of angular momentum log10(‖Gn+1‖)

Figure 2: Variation of error in energy∆E and norm of angular momentum log10(‖Gn+1‖) over time for
various schemes. In (a), it can be seen that the Newmark scheme diverges att ≈ 2.5T0. The adhesion
parameters are:γL = 2.5, γW = 25. The scheme proposed in Gautam and Sauer (2013) gives better
energy conservation.

4.2 Peeling of a deformable strip from a rigid substrate

Next, peeling of a deformable strip from a rigid substrate issimulated. Figure (3) shows the initial
configuration. The geometric and material data are taken from Sauer (2011). The strip is considered to
have a lengthL = 200L0 and heighth = 10L0. Plain strain situation is considered. The strip, initially at
rest, is peeled off the substrate by applying a time varying displacement ¯u = ū(t) on the right side edge
such that the velocity of pull iṡ̄u =1 m/s. The displacement is applied with initial ramp-up to avoid
initial shock to the strip. The displacement is applied until theY coordinate of the point P (see Fig. 3) is
less than 10L0.

Point P

Rigid substrate

Y

Deformable Strip10L0

200L0

X

˙̄u, Pz

Figure 3: Initial configuration of a deformable strip adhering to a rigid substrate. The strip is pulled at
ū(t) at the right edge, i.e., atX = 200L0 such that˙̄u = 1 m/s. AtX = 200L0, the strip is constrained in
X direction.Pz is the unknown reaction force corresponding to ¯u.

The interaction of the strip and the rigid substrate is assumed to be governed by the interaction potential
Φℓ given in Eq. (8). Sixteen elements are chosen over the strip heighth. The aspect ratio is kept at one.
Adhesive contact is considered along the 75% of the bottom surface i.e., fromX = 0 toX = 150L0.
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Remark: As noted in Sauer (2011) linear approximation of the displacement i.e., Q1C1 contact finite
element, at the contact interface can lead to unphysical oscillations. These oscillations can be reduced
using enriched contact finite elements, for e.g. Q1C2 and, Q1C4, at the contact interface4. Enriched
contact finite elements Q1C2 and Q1C4 correspond to quadratic and fourth order approximation of
displacement at the contact interface. The advantages of using Q1C2 and Q1C4 elements is discussed
in section 4.2.3.

4.2.1 Description of the peeling process

First, the peeling process is explained. The results are presented for the time step∆t = 0.01T0. En-
riched contact finite element Q1C4 is employed at the contactinterface. The configurations at different
time instances are shown in Fig. (4). The peeling starts atT = 40T0 (Fig. 4(c)). The configuration at
T = 130T0 (Fig. 4(j)) shows the strip just before it completely peels off from the substrate. Various
intermediate configurations at different time instances are also shown. The corresponding pull-off force
with time is shown in Fig. (5) for the three schemes. The markers ’A-J’ on Fig. (5) correspond to dif-
ferent configurations shown in Fig. (4). The phase until point ’C’ is when the strip stretches without
peeling. The maximum peel-off force is reached when the peel-off starts. The phase from ’C’ to ’I’
correspond to stable peeling. After this, the remaining part of the strip snaps off from the substrate
leading to fluctuation in peel-off force as marked in point ’J’. The simulation is stopped when the strip
has completely peeled-off from the surface. It can be seen that all the schemes have similar response.

The variation of the resultant velocity of point P (see Fig. 3) for different schemes is shown in Fig. (6(a)).
It can be seen that all the schemes give similar response. Theoscillations in the response (Fig. 6(b)) are
because of numerical artifacts which arise due to spatial discretization at the contact interface. Sec-
tion 4.2.3 further discusses this behavior.

In the further text, the results of this sections are treatedas exact results since no closed form solution is
available. In the figures that follow, the text’Exact’ is used. Also, in the results that follow the variation
of peel-off force with applied displacement for different cases is only shown at start of the peeling.
Similarly, the variation of resultant velocity with time ofpoint P for different cases is shown only at the
end of peeling.

4.2.2 Response of the schemes

The response of the three schemes for different time steps i.e.,∆t = 1T0, 0.1T0, and 0.05T0 is presented.
Figure (7) shows the pull-off force with time at the start of the peeling. Linear displacement interpo-
lation, i.e. Q1C1 contact element, is used at the contact interface. The exact result is also included. It
can be seen that as the time step is decreased oscillations appear in the response which is because the
spatial discretization at the contact interface is unable to accurately resolve the contact forces (Eq. 9). It
is later shown in section 4.2.3 that the enriched contact elements proposed by Sauer (2011) can resolve
the contact forces more accurately. All the schemes, however, give similar response for all the time
steps. The variation of resultant velocity of point P (see Fig. 3) with time at the end of peeling is shown
in Fig. (8). It can be seen from Fig. (8(a)) that the proposed and the Bathe’s composite schemes do not
have the oscillatory behavior of the Newmark scheme. Unphysical oscillations are observed for all the
schemes with reducing the time step i.e.∆t = 0.1T0 and 0.05T0. However, the oscillations are about
the exact value.

4See Sauer (2011) for detailed discussion on the performanceof enriched contact finite elements applied to static peeling
problems.
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(a) T = 10T0: A (b) T = 30T0: B

(c) T = 40T0: C (d) T = 50T0: D

(e) T = 60T0: E (f) T = 70T0: F

(g) T = 90T0: G (h) T = 110T0: H

(i) T = 120T0: I (j) T = 130T0: J

Figure 4: Deformed configurations at various time instancesof a deformable strip peeling from a rigid
substrate. The interaction between the strip and rigid substrate is assumed frictionless.

4.2.3 Effect of enriched contact finite elements

The oscillations in the response observed in previous section using linear interpolation at the contact
interface with decreasing the time step are unphysical. As mentioned earlier, this is because the linear
displacement interpolation at the contact interface is unable to accurately resolve the contact forces given
by Eq. (9). To alleviate the problem enriched contact finite elements have been proposed recently by
Sauer (2011). In this work, however, the results are presented for dynamic peeling. Figure (9) shows the
details of the pull-off force with time using the proposed scheme for three different time steps. It can be
seen clearly, (see Fig. (9(d))), that the unphysical oscillatory response for smaller time steps is reduced
when using enriched contact finite elements at the contact interface.

Figure (10) shows the plot of resultant velocity of point P (see Fig. 3) with time for three different time
steps using the proposed scheme. It can be seen that for all the time steps linear interpolation leads to
oscillatory response which are reduced when enriched contact finite elements are used. The response
using the Q1C4 element for all the time steps is closest to exact result.
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Figure 5: Variation of pull-off force with time using Q1C4 enriched contact finite element. The time
step used is∆t = 0.01T0. It is seen that all schemes give nearly similar responses. The markers ’A’-’J’
on the curve show the pull-off force corresponding to the configurations in Fig. (4).
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(a) Complete response
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(b) At the end of peeling

Figure 6: Variation of resultant velocity of point P with time using different schemes and Q1C4 enriched
finite element at the contact interface. The time step used is∆t = 0.01T0. All schemes gives similar
response. The oscillations in the response shown in (b) are artifacts of the spatial discretization at the
contact interface.

4.2.4 Comment on computational time

We conclude this section by presenting the computational time required for various schemes at different
time steps using three enriched contact finite elements at the contact interface, see Fig. (11). All the
results have been obtained by running the various cases on the same machine. It is clearly seen that
the proposed scheme adds very little to the computational cost with respect to Newmark scheme even
when additional degree of freedoms are added by using enriched contact finite elements. Also, it can be
seen that the computational time of the proposed scheme is considerably lower as compared to Bathe
composite scheme for same contact interface discretization. This is since the Bathe composite scheme
divides each time step into two equal substeps which leads tohigher computational cost. The saving in
computational time is particulary beneficial for systems with large degree of freedom systems specially
three dimensional cases as discussed next.
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(a) ∆t = 1T0
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(b) ∆t = 0.1T0
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(c) ∆t = 0.05T0

Figure 7: Variation of pull-off force with time using the Q1C1 element. The exact results are also
included. The oscillations in the response are because of numerical artifacts which arise due to spatial
discretization at the contact interface.

4.3 Peeling of a gecko spatula

Finally, the dynamic pull-off behavior of the gecko spatulais analyzed. First, the Gecko adhesive system
is presented. Then, we discuss the procedure for selecting the values of the damping parameters:α1 and
α2, required for Rayleigh damping, see Eq. (14). Finally, somerepresentative numerical results are
shown using the three different time integration schemes considered in the present work.

4.3.1 Gecko adhesive system

One of the remarkable qualities of geckos is their ability toclimb vertical and overhead surfaces and
move around with comparatively high speeds when required. This remarkable quality has led to sig-
nificant research in understanding the underlying mechanisms of gecko adhesion. Figure (12) shows
the gecko adhesive system. In the figure, ’A’ shows a gecko, the size of which is approximately 10 cm
while ’B’ shows the toes of the gecko foot with hundreds of parallel lines of hair-like structures called
the lamellaof approximately 1-2 mm in size. Further zooming in (’C’ in the figure) shows hundreds of
micrometer size (∼100µm) fine hairs called theseta. An individual seta is shown in ’D’ which branches
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(b) ∆t = 0.1T0
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(c) ∆t = 0.05T0

Figure 8: Variation of resultant velocity of point P with time using different time steps and Q1C1 en-
riched finite element at the contact interface. All schemes gives similar responses. Smaller time steps
lead to unphysical oscillations in the response.

into hundreds of finer hair-like structures (further zoomedin inset ’E’) called spatulae (see Fig. 13 for
the microscopic images of an individual spatula). These spatulae transfer the adhesive and frictional
forces between the gecko and the substrate through large mechanical deformations and rotations. The
spatulae form an elemental part in the understanding of gecko adhesion. Thus, it is clear that the gecko
adhesive system is a complex multi-level hierarchial structure. Understanding the adhesive mechanism
of gecko, thus, requires first understanding the peeling behavior of an individual spatula.

4.3.2 Details of applied load and finite element mesh of a gecko spatula

Before we present the numerical analysis of dynamic peelingof a gecko spatula, we present the loading
condition and finite element mesh considered for a single gecko spatula. The detailed geometry model
of the spatula has been presented and discussed in detail in references [Sauer (2009); Sauer and Holl
(2013)]. Figure (14) shows the the initial configuration of the spatula. The interaction of the gecko
spatula and the rigid substrate is assumed to be governed by the interaction potentialΦℓ given in Eq. (8).
A vertical displacement ¯u = ū(t) is applied to the spatula shaft such that a constant pull-offvelocity
˙̄u =1 m/s is achieved. The final pull-off velocity is reached after an initial ramp-up so as to avoid sudden
loading of the spatula. The finite element mesh of the gecko spatula consists of 114,414 elements and
363,144 degrees of freedom. A 3D enriched contact finite element, see reference [Sauer (2011)], is
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(b) ∆t = 0.1T0
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(c) ∆t = 0.05T0
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(d) ∆t = 0.05T0 (zoomed view)

Figure 9: Variation of pull-off force with time using the proposed composite scheme. The exact results
are also included. The oscillations, as seen in Fig. (9(d)),in the response are because of numerical
artifacts which arise due to spatial discretization at the contact interface.

employed at the contact interface. Also, to avoid using verysmall time steps numerical damping is
considered. The procedure for choosing the damping coefficients, based on numerical experiments, is
discussed next.

4.3.3 Choice of damping parametersα1 and α2

In the present work, we focus only on stiffness proportionaldamping such thatα1 = 0. A free vibration
analysis of the gecko spatula is carried out using the Newmark scheme and the Bathe composite scheme
for selecting an appropriate value forα2. Figure (15) shows the variation of X and Z coordinates of
a point P (see Fig. 14) on the spatula pad for the case with Newmark scheme for different value of
α2. It can be seen that some values lead to over damped response while other values lead to under
damped response. Also, it can be seen that for the case with nodamping the Newmark scheme fails after
t = 180T0. For the results that follow,α2 = 0.004/ns is chosen for simulations. Figure (16) shows the
comparison of Newmark and Bathe composite scheme. It can also be observed that the Bathe composite
scheme is long time stable. Both the schemes give similar response when damping is considered.
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(b) ∆t = 0.1T0

100 105 110 115 120 125
0.42

0.44

0.46

0.48

0.5

0.52

Time [T
0
]

R
es

ul
ta

nt
 v

el
oc

ity
 o

f P
 [L 0T

−
1

0
]

 

 

Q1C1
Q1C2
Q1C4
Exact

(c) ∆t = 0.05T0

Figure 10: Variation of resultant velocity of point P with time using the proposed scheme for different
time steps and different enriched finite element. It can be seen that use of enriched contact elements
leads to reduction in oscillatory response.

4.3.4 Numerical analysis of gecko spatula peeling

Here, we present results for the dynamic peeling of gecko spatula from a rigid substrate. Figure (17)
shows the spatula configuration at different time instances. The Bathe composite scheme is employed
for time integration. The peeling front can be seen moving along the spatula surface.

Next, the performance of proposed scheme is compared with Newmark and Bathe composite scheme.
The variation of pull-off force with time for the three schemes is shown in Fig. (18). The response of the
Newmark scheme shows spurious oscillations (Fig. 18(b)) while the Bathe composite scheme as well as
the proposed scheme give a smoother response. Also, it can beseen that the Newmark scheme diverges.
After the spatula has completely peeled-off the vibrationsof the spatula are quickly damped when using
the Bathe composite scheme as the kinetic energy quickly reduces to zero, see Fig. (19). However,
for the case when the proposed scheme is used, the spatula oscillates for longer. This is because the
kinetic energy decreases slowly, see Fig. (19). However, noreference results are available to ascertain
the accuracy of the schemes for the post peel-off behavior.

The maximum spatula pull-off force, which is reached prior to complete peel off, is∼ 8 nN. This value
is in agreement with measured spatula pull-off loads reported in the literature, e.g. [Huber et al. (2005);
Sun et al. (2005)]. However, the experimental force displacement results reported in Autumn et al.
(2000) have been performed on a seta where the seta is pulled both parallel and perpendicular to the sur-
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Figure 11: Computational time required for various schemesat different time steps using three enriched
contact finite elements at the contact interface.

face. A single seta consists of around 100-1000 spatulae. Hence, the results reported by Autumn et al.
(2000) are combined results of all the spatulae and not a single spatula. Hence, for around 1000 spatu-
lae, an estimate based on results of single spatula of current work results in maximum pull off force of
8 µN. This is in range of the perpendicular pull-off force reported in Autumn et al. (2000) (see Fig. 4
in the reference). However, since in the present work the results reported are based on a single spatula,
to simulate the experimental data reported by Autumn et al. (2000), a detailed simulation of peeling of
seta is required. Such a study will be carried out in a future work.

Figure (20(a)) shows the computational effort i.e., computational time required per increment, for spatula
peeling using different schemes. It can be seen that the proposed scheme adds very little to the overall
computational effort. As seen from Fig. (20(b)), the computational effort per increment per NR iteration
is higher for the proposed scheme. However, since the numberof NR iterations per increment (see
Fig 20(c)) is much higher for the Bathe composite scheme (dueto solving the equation of motion twice
in each time step), the over all computational time of the Bathe composite scheme is higher.

5 Concluding remarks

Dynamic adhesive contact simulations specially involvingpeeling have attracted very little attention. In
the present work, a composite time integration scheme is proposed for simulation of dynamic adhesive
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Figure 12: Gecko adhesive system. Notice the multi-level hierarchial structure of the gecko adhesive
system. In the figure: ’A’ shows a gecko (∼ 10 cm), ’B’ shows a gecko foot with hundreds of hair-like
structure called thelamellas(∼ 1-2 mm), ’C’ shows the zoomed view of the gecko pad showing the
setas(∼ 100µm), ’D’ shows a single geckoseta, and ’E’ shows zoomed view of the tip of seta showing
the so-calledspatulae. Figures have been adapted with permission from Autumn et al. (2006).

contact problems. The performance of the proposed scheme iscompared with two class of collocation-
based schemes: Newmark scheme which is a parameter-based scheme and Bathe composite scheme
which is a parameter-free scheme. Following conclusions are drawn based on the numerical simulation
of a number of example problems:

1. The Bathe composite scheme and the proposed scheme remainstable for all the cases. The New-
mark scheme diverges for some cases.

2. In the first example i.e., dynamic interaction of a deformable ball with a rigid surface, it is shown
that the proposed scheme leads to accuracy gains and adds very little to the overall computational
effort.

3. All the schemes give similar response for the peeling of a deformable strip from a rigid substrate.
However, the computational cost of the proposed scheme is smaller compared to Bathe composite
scheme and only marginally higher compared to the Newmark scheme.

4. The Newmark scheme diverges in the peeling of a gecko spatula from a rigid substrate. The
Bathe composite scheme and the proposed scheme are able to simulate the spatula behavior after
the complete peel off. It is also shown that the computational effort required using the proposed
scheme is lower.

The presented work is highly relevant to general adhesion and debonding problems. Further considera-
tion are incorporation of friction effects and material damping.
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Figure 14: Initial configuration of the gecko spatula. PointP is on the bottom surface of the spatula pad.
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Figure 15: Variation of X and Z coordinate of point P of the spatula for various value of damping
parameters. Newmark scheme is used for time discretization. Notice that the Newmark scheme diverges
aftert ≈ 180T0.
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(a) t = 0 ns (b) t = 95 ns (c) t = 150 ns

Figure 17: Spatula deformation for an applied vertical displacement ¯u(t). The color scale shows the first
invariant of stress normalized by Young’s modulusE. The value of the color plots ranges from -0.125E
to 0.250E.
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(a) Pull-off force with applied displacement
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(b) Zoomed view of figure (a)

Figure 18: Spatula pull-off force with applied displacement using different schemes. Figure (a) shows
the full plot where as figure (b) shows the zoomed view at maximum pull-off force. It should be noted
that the Newmark scheme diverges. The spurious oscillations in the response of Newmark scheme are
clearly visible in Fig. (b) which are not present for the Bathe composite scheme and the proposed
scheme.
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Figure 19: Variation of kinetic energy with time for different schemes. For the case with Bathe composite
scheme, the kinetic energy quickly damps out where as for theproposed scheme it decreases slowly .
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(a) Computational time per increment
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(b) Computational time per increment per NR iteration
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(c) Number of NR iterations per increment

Figure 20: Comparison of computational effort required forsimulating the peeling of a gecko spatula
using different schemes. It can be seen that the computational effort required using the proposed scheme
is lower.
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