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Abstract

We present an isogeometric enrichment technique for three-dimensional finite element computa-
tions applied to frictional contact and mixed-mode debonding. This is an extension of previous
work that focused on two-dimensional and frictionless problems. To offer a more complete view
of the enriched element’s performance, a comparison of the results to tri-variate isogeometric
discretizations and standard Lagrangian elements is also included here. The enrichment is ap-
plied by discretizing parts of the surface that require higher accuracy with isogeometric basis
functions, while the rest of the body uses Lagrangian shape functions. By using an isogeomet-
ric surface representation, the higher continuity across element boundaries and higher order of
interpolation can be exploited. At the same time, the generation of tri-variate isogeometric
meshes is avoided.

A convergence study without any surface effects, involving only volume integrals, shows that
the enriched elements can also be beneficial for these problems. The major advantage of the
isogeometric element enrichment over standard tri-linear elements is demonstrated in contact
problems including normal and tangential tractions. For both, mixed-mode cohesive debonding
and frictional contact, the enrichment increases robustness and leads to more accurate results
than standard linear Lagrangian elements. All computations are also compared to results using
tri-variate isogeometric discretizations to give a complete picture of the element’s performance.
It is also shown that the proposed enrichment formulation has advantages in mesh generation.

Keywords: computational contact mechanics, isogeometric analysis, nonlinear finite element
methods, cohesive zone modeling, peeling, friction

1 Introduction

The accurate description of surface effects and the computation of surface quantities can play
a crucial role in engineering applications. In contact computations for instance, the contact
pressure or quantities derived from contact forces are often of special interest. Besides accuracy
and efficiency, also the robustness of such computations can be a critical aspect. This work
aims at combining high surface accuracy with an efficient and simple bulk description. To
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achieve this goal, the surface or parts of the surface that require high accuracy are discretized
using isogeometric basis functions, while the rest uses standard Lagrangian finite elements.
Isogeometric basis functions, like NURBS or T-splines, offer a higher order of interpolation and
in general continuity of C1 or higher across element boundaries. By applying the isogeometric
enrichment only locally where it is required, the overall computational cost is only increased
slightly, while the advantages of the method are available at the same time.

This has been shown in 2D and for three-dimensional frictionless normal contact in Corbett and
Sauer (2014) and for enrichments involving higher-order Lagrangian and Hermite interpolation
on the surface in Sauer (2011) and Sauer (2013). The isogeometric enrichment technique leads
to major improvements in reaction forces and bending moments compared to standard linear
Lagrange elements in sliding and peeling contact computations. In 2D, Hermite interpolation
on the surface leads to solutions of comparable accuracy, but an extension to 3D does not
exists. For the three-dimensional example considered in Corbett and Sauer (2014), the use of
isogeometrically enriched elements leads to more accurate results while reducing the runtime by
35% compared to linear elements due to a reduction of the required number of Newton iteration
steps.

Based on these promising results, this work extends the previous work by evaluating the gen-
eral performance of the three-dimensional isogeometrically enriched elements in a convergence
study. Also, the use of isogeometrically enriched elements in tangential contact is analyzed and
discussed. The model problems are a debonding simulation using a mixed-mode exponential
cohesive zone model and a frictional contact simulation using a stick-slip algorithm. A further
novelty is the comparison of the enriched elements to tri-variate isogeometric finite elements.
This extension offers a more complete picture of the performance of the enrichment technique,
which has previously only been compared to tri-linear Lagrangian finite elements and other
enrichment techniques. Furthermore, the enrichment of quadratic Lagrange element meshes is
considered in addition to the linear Lagrange case considered so far.

A thorough discussion of finite element enrichment, isogeometric analysis, and computational
contact mechanics can be found in Corbett and Sauer (2014) and references therein. The
following gives a brief introduction and names some recent advancements.

The concept of isogeometric analysis (IGA) was introduced by Hughes et al. (2005) and has
since been adopted in many fields. Originally, isogeometric analysis was developed to bridge the
gap between computer aided design (CAD) and finite element analysis (FEA) and has become
popular due to its advantageous approximation properties. In computational contact mechanics
the use of IGA offers advantages due to the continuous surface representation and its basis func-
tions, which are greater or equal to zero3. Continuity of C1 or higher restricts the need to treat
edge and corner contact to truly geometric features as opposed to edges and corners appearing
as the result of a faceted C0 discretization. Recent advances in computational contact with IGA
include multiscale thermomechanical contact Temizer (2014), large deformation contact using
T-splines Dimitri et al. (2014a), thermomechanical Mortar contact Dittmann et al. (2014), iso-
geometric collocation for contact De Lorenzis et al. (2015), and modeling of solid and liquid
membrane contact Sauer et al. (2014) and Sauer (2014).

The construction of volumetric spline meshes is challenging due to the tensor-product nature
of the basis that requires hexahedral meshing. Current research explores the mapping to poly-
cubes Escobar et al. (2011), Wang et al. (2013), and Liu et al. (2014) or the use of immersed
boundary meshes within the finite cell method Schillinger et al. (2012). The presented enrich-
ment technique only requires an isogeometric surface representation and avoids the issue of

3Quadratic Lagrange basis functions for example also have negative values. Interpolating a positive value at
such a position leads to a negative nodal contribution and can lead to an unphysical solution.
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volumetric IGA meshes. This is achieved by connecting the isogeometric surface mesh with a
standard Lagrangian finite element volume mesh which can be generated using widely available
and existing meshing tools.

Isogeometric analysis has been used with cohesive zone models by Verhoosel et al. (2011) with
NURBS and T-splines in 2D, by Corbett and Sauer (2014) for 2D NURBS-enriched elements,
and by Dimitri et al. (2014b) with NURBS and T-splines in 2D and 3D. Within this work, three-
dimensional isogeometrically enriched elements will be analyzed and compared to NURBS and
Lagrangian solutions.

The following section 2 gives a brief overview of the theoretical background of the finite element
set-up, IGA, and the contact models used within this work. The procedure of creating volumetric
meshes from an isogeometric surface description is described in section 3. It is followed by
an investigation of the enriched elements and their convergence behavior in section 4. Three
numerical examples, comparing the enriched elements to fully Lagrangian and fully isogeometric
elements are discussed in section 5. Section 6 summarized the results of the presented work.

2 Theory

This section presents the isogeometric enrichment technique and gives a brief overview of the
contact formulations used in the numerical examples in section 5. The enrichment formulation is
presented in a general, three-dimensional form. It can be applied to any finite element basis that
admits a Bézier representation, including B-splines, NURBS, and T-splines, and is independent
of the order of interpolation of the enrichment. The tangential contact formulations considered
are frictional contact and a mixed-mode exponential cohesive zone model.

2.1 Finite element framework

In the following, two deformable bodies Bk (k = 1, 2) in R3 are considered within the framework
of large deformations. The weak form of the two-body system

2∑
k=1

[ ∫
Bk

grad(δϕk) : σk dvk−
∫
∂cBk

δϕk · tck dak︸ ︷︷ ︸
virtual contact work

− δΠext,k

]
= 0 , ∀ δϕk ∈ Vk (1)

is solved for the unknown deformation field ϕk ∈ Uk, where Uk is a suitable space for the
deformation field. Within Eq. (1), σk is the Cauchy stress tensor, tck is the contact traction on
surface ∂cBk, δΠext,k is the external virtual work, and Vk is the space of kinematically admissible
variations. Dropping the index k for body Bk, the contact traction

tc = tn + tt (2)

can be decomposed into a normal component tn and a tangential component tt.

A physical point x of body Bk is described by the mapping

x = x(ξ, η, ζ) {ξ, η, ζ} ∈ P3 (3)

which maps a point from the parametric space P3 to the physical space. On the surface ∂Bk,
a point is mapped from the 2D parameter space P2 to the 3D physical space by means of

x = x(ξ, η) {ξ, η} ∈ P2 . (4)
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Figure 1: Schematic sketch of a body with an enriched surface ∂eB. The contact area ∂cB is
completely embedded within the enriched area.

In the discrete setting, denoted by a superscript h, each body is approximated such that Bhk ≈
Bk. This is done with a set of shape functions N and a set of discrete points x, finite element
nodes in traditional FE and control points in IGA. A point x ∈ Bk is interpolated as

x ≈ xh = Nx (5)

with xh ∈ Bhk . Traditionally, Lagrange polynomials are used as shape functions for standard
finite elements, although other choices are possible.

For problems dominated by effects on the surface or where surface quantities are of special inter-
est, surface enrichment techniques can be applied. The presented surface enrichment technique
describes the part of the surface that requires higher accuracy

∂eBk ⊆ ∂Bk (6)

using isogeometric basis functions, while the rest of the body can be discretized using standard
Lagrangian finite elements. Note that the entire surface or only parts of it can be enriched. In
the case of contact computations for instance, one would choose the enriched surface ∂eBk such
that contact only occurs within this area,

∂cBk ⊆ ∂eBk . (7)

In Figure 1, a body B with an enriched surface ∂eB is depicted. This area is chosen in such a
way that the entire contact area ∂cB is embedded within the enriched area.

In general, the contact area is not known a priori, which means that the enriched surface area
must be chosen sufficiently large to cover all contact areas during the entire computation. Thus,
enriching the surface adaptively only in the area currently needed is a promising approach for
future research.

In order to introduce the enriched elements, first some concepts of IGA are presented in the
following.

2.2 Isogeometric analysis

This section will focus on the key concepts necessary to understand and implement the iso-
geometrically enriched elements and will only give a brief overview. Details on the basics of
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isogeometric analysis can be found in the literature, for instance in Hughes et al. (2005) and
Cottrell et al. (2009), and will not be repeated here.

Using the Bézier extraction operator introduced in Borden et al. (2011) for NURBS and B-
splines, and extended to T-splines in (Scott et al., 2011), the implementation of the enrich-
ment is straightforward. A disadvantage of B-spline basis functions from a finite-element-
implementation point of view is that they are in general different for each element. The localized
Bézier extraction operator Ce allows B-spline basis functions N̂e = {N e

A}
p+1
A=1 of order p to be

written as a linear combination of a set of Bernstein polynomials Bp = {Bp
A}

p+1
A=1 for an element

e. By expressing them in terms of Bernstein polynomials

N̂e(ξ) = CeBp(ξ) (8)

the function evaluation becomes the same for each element and can be precomputed at the
quadrature points. The Bézier extraction operator Ce is in general different for each element,
but it remains constant throughout the computation and only needs to be computed once.

For a two-dimensional surface, two Bézier extraction operators Ce
ξ and Ce

η and two sets of

Bernstein polynomials Bp = {Bp
A}

p+1
A=1 and Bq = {Bq

A}
q+1
A=1 of order p and q in the direction of

the parametric coordinates ξ and η, respectively, are required. The tensor product structure
yields a set of

necp = (p+ 1)(q + 1) (9)

B-spline basis functions N̂e = {N̂A}
ne
cp

A=1, corresponding to the necp control points defining the
element. The B-spline basis functions are given by

N̂e(ξ, η) = Ce
ξB

p(ξ)⊗Ce
ηB

q(η) . (10)

To go from B-spline basis functions to rational NURBS basis functions, a weight wA is applied
to each control point and corresponding basis function. With the weighting function

W (ξ, η) =

ne
cp∑

A=1

wAN̂
e
A(ξ, η) (11)

the set of rational basis functions Re = {ReA}
ne
cp

A=1 is defined as

ReA(ξ, η) =
wAN̂ e

A(ξ, η)

W (ξ, η)
. (12)

Using a tri-variate isogeometric discretization requires an additional Bézier extraction operator
Ce
ζ and set of Bernstein polynomials Br = {Br

A}
r+1
A=1 of order r for the parametric ζ-direction.

The number of control points and basis functions per element increases to

necp,v = (p+ 1)(q + 1)(r + 1) (13)

in the volumetric case. The B-spline basis functions N̂v = {N̂A}
ne
cp,v

A=1 are given by

N̂v(ξ, η, ζ) = Ce
ξB

p(ξ)⊗Ce
ηB

q(η)⊗Ce
ζB

r(ζ) . (14)

The extension to rational basis functions is equivalent to the two-dimensional case in Eq. (11)
and Eq. (12).

Note that the generation of volumetric NURBS and T-spline meshes is challenging for general
geometries and is a topic of current research, e.g. see Escobar et al. (2011), Wang et al. (2013),
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Liu et al. (2014), and Schillinger et al. (2012). For the simple geometries considered in the
scope of this work, the tri-variate meshes can be constructed manually and the results obtained
with the tri-variate NURBS will be compared to those of the enriched elements. Only the case
p = q = r is considered, and the elements will be denoted IGAp, for instance IGA2 for quadratic
NURBS in each parametric direction.

2.3 Isogeometric enrichment technique

The simplest three-dimensional isogeometrically enriched element is a tri-linear hexahedral ele-
ment (denoted Q1), of which one surface is removed and replaced with an isogeometric discretiza-
tion. This element will be used to introduce the enrichment technique. Instead of assuming that
we begin with a volumetric mesh and replace part of the surface, the opposite point of view is
more convenient and better reflects the actual workflow of mesh generation. To begin with, the
isogeometric description of the surface ∂Bk is given. This automatically includes the discretiza-
tion ∂Bhk = ∂Bk with Bézier surface elements, which live in the two-dimensional parametric
space P2. From such a quadrilateral surface element, an enriched hexahedron is created by
extending it in the parametric ζ-direction, e.g. using linear Lagrange shape functions and four
finite element nodes. The surface ζ = −1 is chosen as the enriched surface, without loss of gen-
erality. With Eq. (9) and Eq. (10), the set of ncp + 4 element shape functions Ne = {NA}

ncp+4
A=1

is then given by
N1 = R1(ξ, η) 1

2(1− ζ)

N2 = R2(ξ, η) 1
2(1− ζ)

...

Nncp = Rncp(ξ, η) 1
2(1− ζ)

Nncp+1 = 1
8(1− ξ)(1− η)(1 + ζ)

Nncp+2 = 1
8(1 + ξ)(1− η)(1 + ζ)

Nncp+3 = 1
8(1 + ξ)(1 + η)(1 + ζ)

Nncp+4 = 1
8(1− ξ)(1 + η)(1 + ζ) .

(15)

The first ncp shape functions are the combination of the Bézier surface quadrilateral with a
linear interpolation in the third dimension, while the last 4 shape functions form the standard
tri-linear Lagrangian basis. Partition of unity is fulfilled by construction. This is shown in the
following section.

For the extension in the third dimension linear Lagrange interpolation can be considered in
most cases in order to maintain the efficiency of the overall computation. However, as will
be shown in the following finite element convergence study, the consideration of a quadratic
extension using quadratic Lagrangian elements in the bulk domain is also possible, e.g. for cases
where tri-linear elements suffer from shear locking. Although the computational cost of these
elements is higher, they still offer the advantage of simpler mesh generation than tri-variate
isogeometric meshes for general geometries while maintaining surface continuity. A schematic
sketch of both, an enriched element with a linear and a quadratic extension in the ζ-direction,
is shown in Figure 2.

The enriched elements with a quadratic Lagrangian extension are also briefly introduced. These
elements offer higher accuracy and do not suffer from shear locking, but come at the cost of

higher computational effort. The set of shape functions N
(2)
i then consists of ncp +18 functions.
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(a) Linear Lagrange extension (Q1N2) (b) Quadratic Lagrange extension (Q2N2)

Figure 2: Schematic sketch of elements with isogeometric surface enrichment.

Of these, the first ncp functions

N
(2)
i = Ri(ξ, η)

1

2
(ζ2 − ζ) i = 1, . . . , ncp (16)

form the enriched surface while the other 18 basis functions are the standard quadratic La-
grangian basis functions on the planes ζ = 0 and ζ = 1. These elements also form a partition of
unity, shown in the following section. Figure 2b shows a schematic sketch of such an element.

In the examples in the following section, only the case p = q for the degree of the isogeometric
basis functions will be considered, although in general different orders may be chosen for each
parametric direction. The enriched elements will be denoted Q1Np or Q2Np,where Q1 or
Q2 denotes the Lagrangian base and Np the isogeometric surface of order p in each parametric
direction. The letter N is chosen in accordance with Corbett and Sauer (2014) as an abbreviation
of NURBS to avoid confusion of the number 1 and a capital I if isogeometric was used.

Figure 3 is a schematic sketch of different possibilities regarding surface discretization for the
contact projection and the solution procedure. Different discretizations can be chosen for both
operations, leading to the four cases considered here. We differentiate between faceted C0 and
smooth Cn with n ≥ 1 meshes for both operations. The comparison clearly shows the difference
between the standard linear Lagrange approach, surface smoothing techniques, and the proposed
enrichment technique. In Figure 3 the solid black lines correspond to the finite element mesh
used for analysis. The surface discretization used for the contact projection is shown as a
dashed red line. The blue point is projected orthogonally onto the dashed surface mesh below.
All meshes are created from the same geometry, but the schemes result in different distances
and directions for the normal gap between the point and the surface. Using standard linear
Lagrange elements, depicted in the upper left corner, both the geometry and the solution are C0,
so that the mesh for analysis and the mesh for the projection coincide. A surface smoothing
technique like Bézier interpolation (see Wriggers (2008)) results in higher continuity on the
surface mesh for the projection, the solution is nevertheless computed using the underlying
C0 elements. Also, the consistent linearization becomes increasingly complex, especially in
the three dimensional case. This case is depicted in the upper right corner of Figure 3, the
difference between the projection mesh (dashed line) and the analysis mesh (solid line) can be
seen clearly. Using the proposed isogeometric enrichment technique, both the surface geometry
and the solution have C1 or higher continuity. There is no discrepancy between the surface used
to compute the projection and the actual computational domain, as can be seen in the lower
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Figure 3: Comparison of the computation of the closest point projection using different dis-
cretization schemes.

right corner. For completeness, the case in the lower left corner is also included: it is possible
to perform the computation on a smooth surface discretization while approximating the closest
point projection with the linear interpolation of the surface. While reducing the computational
effort for the projection, this re-introduces the problem of non-continuous normal vectors on
the surface and thus is not considered a practical approach.

2.4 Partition of unity

To show that partition of unity is fulfilled for both the enrichment of linear and quadratic
Lagrange elements, let li(ξ) be the nl one-dimensional Lagrange basis functions. In the linear
case we have nl = 2 basis functions

l1(ξ) =
1

2
(1− ξ)

l2(ξ) =
1

2
(1 + ξ)

(17)

while the quadratic case leads to nl = 3 basis functions

l1(ξ) =
1

2

(
ξ2 − ξ

)
l2(ξ) =

1

2

(
ξ2 + ξ

)
l3(ξ) = 1− ξ2 .

(18)

For the proof we use the fact that both two-dimensional Lagrange basis functions and two-
dimensional isogeometric basis functions form a partition of unity. We start with a tri-linear
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Lagrange element, which also satisfies partition of unity. By pulling the surface at ζ = −1 out
of the sum and replacing it with the isogeometric discretization with ncp basis functions we get

1 =

nl∑
i=1

nl∑
j=1

nl∑
k=1

li(ξ) lj(η) lk(ζ)

=

nl∑
i=1

nl∑
j=1

nl∑
k=2

li(ξ) lj(η) lk(ζ) + l1(ζ)

nl∑
i=1

nl∑
j=1

li(ξ) lj(η)︸ ︷︷ ︸
=1

=

nl∑
i=1

nl∑
j=1

nl∑
k=2

li(ξ) lj(η) lk(ζ) + l1(ζ)

ncp∑
i=1

Ri(ξ, η)︸ ︷︷ ︸
=1

.

(19)

In the last line of Eq. (19), the first term corresponds to the standard Lagrangian basis functions
in the enriched element, while the second term sums up the mixed basis functions. With the
total number of basis functions

nno = ncp + n2
l · (nl − 1) = ncp + n3

l − n2
l (20)

we can then continue with

1 =

n3
l−n

2
l∑

i=1

Nncp+i(ξ, η, ζ) +

ncp∑
i=1

Ni(ξ, η, ζ)

=

nno∑
i=1

Ni(ξ, η, ζ)

(21)

where Ni are the enriched element’s basis functions, see Eq. (15) and Eq. (16). The enrichment
thus satisfies the partition of unity. Although we restrict ourselves to linear and quadratic
Lagrange elements in the scope of this work, partition of unity is satisfied regardless of the
degree of the Lagrangian base element.

2.5 Mesh refinement

Different options for mesh refinement have been discussed in detail in Corbett and Sauer (2014)
and will be summarized here. The two methods used to refine NURBS patches are order
elevation and knot insertion. Both methods can be repeated arbitrarily many times, but they
are not commutative.

Using one quadratic line element with the knot vector Ξ = [000222] this can be demonstrated.
Inserting a unique knot leads to an additional element, while the order remains quadratic. The
resulting knot vector is Ξ = [0 0 0 1 2 2 2] and the continuity across the element border is C1.
Order elevation increases the order from p to p + 1, but the continuity between existing knot
spans is not increased. Applying order elevation to the original one-element curve results in a
cubic curve with knot vector Ξ = [0 0 0 0 2 2 2 2].

Inserting a knot into this cubic curve leads to two cubic elements with C2-continuity across the
element border and the knot vector Ξ = [0 0 0 0 1 2 2 2 2]. This order of refinement was named
k-refinement by Hughes et al. (2005). If on the other hand, order elevation is applied to the
two-element quadratic curve, the two resulting elements are cubic but the continuity between
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them remains only C1. The corresponding knot vector is Ξ = [0 0 0 0 1 1 2 2 2 2]. Note that the
knot value 1 is repeated, leading to the reduced continuity between the elements.

Besides the difference in continuity, applying order elevation after knot insertion also leads to
more control points, as can be seen by the length of the knot vector in the example above. The
number of control points ncp is given by

ncp = nΞ − (p+ 1) (22)

where nΞ is the length of the knot vector. For computations dominated by effects on the
surface, the additional degrees of freedom offered by these control points on the surface can
be an advantage. Also, the basis span is reduced with respect to the element size, which
is described in Corbett and Sauer (2014). This allows for a more accurate representation of
sharp boundaries, which are otherwise smoothed by the large basis span of isogeometric basis
functions. Due to this, the proposed refinement strategy to achieve a desired surface continuity,
number of elements, and polynomial degree is the following:

1. start with the simplest surface representation possible

2. perform order elevation until the desired surface continuity is reached; the number of
elements remains unchanged

3. insert unique knots until the desired number of elements is reached, leaving the order
unchanged

4. perform t steps of additional order elevation to increase the polynomial degree and the
number of control points on the surface while the number of elements and surface conti-
nuity remain unchanged

For t = 0 this results in standard k-refinement. For t > 0, the resulting elements will be denoted
Q1Np.t and Q2Np.t for the linear and quadratic Lagrange case, respectively.

It is worth noting that the proposed additional order elevation leads to a large number of control
points also in the volume when used with tri-variate isogeometric discretizations. Therefore,
the advantage of this method could be canceled by the additional computational cost in this
case. By restricting the isogeometric representation to the surface and using a Lagrangian basis
in the bulk, the additional degrees of freedom are only created where they are needed and offer
an advantage.

2.6 Normal contact

Here, normal contact is treated with the penalty method. In order to perform contact compu-
tations, the gap vector

g = xk − xl (23)

between two points xk and xl on neighboring surfaces ∂Bk and ∂Bl, respectively, is required.
In general, the minimum distance is obtained when xl is chosen as the orthogonal projection of
point xk onto surface ∂Bl. This projection point xp = xl(ξp, ηp) is defined by the parametric
coordinates ξp and ηp determined by a local Newton iteration. Note that this point is not
necessarily unique and that in the case of a faceted surface, an orthogonal projection may not
exist.
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The distance between the surfaces is defined as

g =

{
−‖g‖ , if the surfaces penetrate
‖g‖ , otherwise.

(24)

To determine whether the surfaces penetrate, the normal gap

gn = (xk − xp) · np (25)

with the surface normal np at the projection point xp can be defined, which is negative if the
bodies penetrate. A traction in normal direction, proportional to the penetration depth

tn(xk) =

{
−εn gnnp, gn < 0
0, gn ≥ 0

(26)

is applied to each surface point in contact. For frictionless contact, the tangential traction tt is
zero and the contact traction (Eq. (2)) simplifies to tc = tn

4.

The contact integrals are computed with the two-half pass algorithm by Sauer and De Lorenzis
(2013), which evaluates the contact traction on each surface separately.

2.7 Frictional tangential contact

The theory for frictional contact can be found in computational contact textbooks like Laursen
(2002) or Wriggers (2006). The implementation is based on the two-half-pass formulation of
Sauer and De Lorenzis (2014), where further details can be found. Here, only a brief summary
is provided. The frictional contact formulation uses a penalty regularization and is based on a
classical predictor-corrector algorithm.

The tangential contact slip gt is decomposed into a reversible slip ∆ge and an irreversible slip
gs. This decomposition

gt = gs + ∆ge (27)

acts as a regularization for sticking.

Using Coulomb’s law with the coefficient of friction µ and the contact pressure p = ‖tn‖, see
Eq. (26), the tangential traction during sliding is

tt = −µp ġt

‖ġt‖
(28)

with the relative tangential sliding velocity ġt.

The slip criterion to distinguish between the stick and the slip case

f s = ‖tt‖ − µp (29)

is used, where sticking occurs for f s < 0 and sliding for f s = 0. The contact traction tc is
obtained by combining Eq. (26) and Eq. (28).

4The spacial traction tn is chosen over the usual nominal traction T n because it is needed in this form for
the frictional case. The slight variational inconsistency that is introduced by this choice (see Stupkiewicz (2001))
only affects the tangent matrix and not the forces. This inconsistency vanishes as the penalty parameter goes to
infinity and the penetration to zero.
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Figure 4: Magnitude of exponential cohesive zone traction over magnitude of gap, both nor-
malized by the corresponding model parameter.

2.8 Cohesive zone modeling

To simulate the debonding of laminated material, cohesive zone models have been proposed.
In the scope of this work, an exponential cohesive zone model based on Xu and Needleman
(1993) is used. In the undeformed configuration, denoted by the superscript 0, each surface
point x0

k ∈ ∂B0
k within the cohesive zone is projected onto the surface ∂B0

l . The parametric
coordinates ξ0

p and η0
p of this projection point xp = x0

l (ξ
0
p, η

0
p) are stored. Throughout the

computation the gap vector defined in Eq. (23) is computed as the gap between the current
surface point xk and the current position of the original projection point, xl(ξ

0
p, η

0
p). The gap

vector will be denoted g0 to emphasize its relation to the reference configuration and set it
apart from the gap vector used previously in normal contact and frictional contact.

Using the equality
tck dak = T ck dAk (30)

the traction acting on surface ∂Bk can be expressed in terms of the reference surface rather than
the current surface. Here, the traction on surface ∂Bk is given by the mixed-mode debonding
law

T ck(xl) = −T0
g0

g0
exp

(
1− ‖g

0‖
g0

)
(31)

with the parameters T0 and g0. Figure 4 shows the magnitude of the exponential cohesive
zone traction over the magnitude of the gap. The non-linearity, but also the smoothness of the
function can clearly be seen. Also in this case, the two-half pass algorithm is used to evaluate
the traction on each body separately.

Regarding penetration, the stiffness of the cohesive zone model can be too small and can lead to
large penetrations. To avoid this, the cohesive zone model is coupled with a penalty approach
according to Eq. (26)
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Figure 5: Simplified cubic T-spline surface mesh of a rocker arm.

2.9 Constitutive equation

Throughout this work, the hyperelastic Neo Hookean material model is used according to
Zienkiewicz and Taylor (2005). The stress-strain relation for the Cauchy stress σ is

σ =
Λ

J
ln J I +

µ

J
(b− I) (32)

with the determinant of the deformation gradient J , the identity tensor I and the left Cauchy–
Green deformation tensor b. The Lamé parameters µ and Λ can be expressed in terms of
Young’s modulus E and Poisson’s ratio ν using

µ =
E

2 (1 + ν)
and Λ =

2µ ν

1− 2ν
. (33)

3 Volumetric meshing

Although tri-variate isogeometric mesh construction is possible, see for instance Escobar et al.
(2011), Wang et al. (2013), or Liu et al. (2014), it is not widely available. Also, the higher
polynomial degree and higher continuity may not be needed within the volume, in which case
linear elements provide a computationally more efficient alternative. This section will outline
how volumetric meshes can be created from a closed isogeometric surface using the proposed
element enrichment technique.

To demonstrate the method a simplified model of a rocker arm will be used. The initial quadri-
lateral mesh was generated with the integer-grid map quad meshing algorithm by Bommes et al.
(2013). Using this as input to the commercial CAD software Rhino with the T-spline plug-in, a
T-spline surface can be created and exported. The Bézier elements of the resulting surface mesh
are shown in Figure 5. For this demonstration, the entire surface is smooth with continuity of
C1 or higher. It is also possible to preserve sharp C0 feature lines if desired.

To generate a mesh for the interior of the body, the corner points of each Bézier element are
projected inwards along the normal vector of the surface. This is similar to the pillowing el-
ement layer used in Zhang et al. (2012), however here the inward projection is required to
create hexagonal enriched elements with linear Lagrange shape functions in the third paramet-
ric direction. Here, a constant offset for the projection has been chosen for simplicity. The
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(a) T-spline surface (b) Isogeometrically
enriched element layer

(c) Linear interior mesh
with conforming surface

(d) Combined volumetric
model

Figure 6: Generation of a volumetric mesh from a T-spline surface representation.

projection distance could however also be based on local features of the body. Figure 6a shows
a cut through the exported surface mesh, Figure 6b shows the layer of enriched hexahedrons
created by inward projection. The outer surface of this layer remains the exact same T-spline
representation, while the inner surface consists of linear quadrilaterals.

Using this interior surface of linear quadrilaterals as input to commercial mesh generation
software, a volumetric mesh can be constructed using pyramids and tetrahedral elements. The
mesh is created in such a way that the surface mesh remains unchanged and thus conforms to
the interior surface of the enriched element layer. This automatically generated volume mesh
is shown in Figure 6c.

The last step of mesh generation consists of combining the outer layer of enriched elements
with the interior mesh. The resulting mesh in Figure 6d shows a volumetric mesh using linear
elements in the bulk and a T-spline representation on the surface.

When applying this method, T-junctions and extraordinary points on the surface do not require
special attention as they are handled intrinsically by the T-spline representation. However, when
projected inward while creating the enriched element layer, the T-junctions carry over to the
linear interior mesh. In the finite element computation they can be dealt with for instance as
hanging nodes. Regarding commercial mesh generation software, not all programs can deal with
hanging nodes. To avoid this, one can resolve the issue in a pre-processing step by creating
pyramids below the T-junctions, as depicted in Figure 7. Each quadrilateral element around
the T-junction, depicted in gray in Figure 7a, forms the base of a pyramid. These pyramids
all share one common node for their peak, shown in Figure 7b. The distance of the peak node
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(a) T-spline surface (red) and and
linear base of enriched element
layer (gray)

(b) Three pyramids with common
peak node

(c) Combined mesh

Figure 7: Pre-processing of T-junctions.

from the surface containing the T-junction can again be chosen based on local features of the
geometry, but is considered constant here. Now, the seven outer faces of the pyramids can be
passed to the mesh generator instead of the three quadrilaterals forming a T-junction. This way
no hanging nodes are present in the input mesh of the mesh generation software. Extending this
method one can also handle multiple T-junctions attached to the same element. Extraordinary
points require no special treatment when creating an unstructured interior mesh.

4 A simple finite element convergence study

The general behavior of the three-dimensional isogeometrically enriched elements is studied in
comparison with Lagrange and IGA discretizations in this section.

4.1 Problem set-up

Two benchmark problems are set-up. Both involve a solid cube with edge length L0, which is
compressed by 25% in the first case and stretched by 100% in the second case. The hyper-elastic
Neo Hookean material model according to equation (32) is used with ν = 0.2 and E = 1E0. In
both cases a displacement is applied to the nodes on the upper surface, which are fixed in the
other directions. The base of the cube is completely fixed, so that the free faces of the cube
form a convex or concave surface by bulging or necking, respectively. Using the symmetry of
the system, only one fourth of the cube is modeled. Nested meshes are considered, with the
coarsest mesh consisting of only two hexahedral elements with edge length L0/2, see Figures 8
and 11. In the isogeometric case C1 continuity is not enforced at the symmetry planes, so that
the quarter model corresponds to a full model with C0 continuity on the symmetry planes.
Compared to the full model, the relative difference in the force is of the order 10−4 on the
coarsest mesh and is reduced by more than an order of magnitude with each refinement step.
The relative error due to the discretization is more than an order of magnitude larger, allowing
for the quarter model without C1 continuity to be used for the isogeometric cases without
influencing the results negatively.

A variety of different element types are considered. To begin with, the cube is discretized using
8-node tri-linear Lagrange elements (Q1) and 27-node quadratic Lagrange elements (Q2). In
the compressive case the tri-linear Lagrange elements are rather stiff, which is why the enhanced
assumed strain (EAS) method introduced by Simo and Armero (1992) is used. These elements
are enhanced with 9 extra modes and will be denoted Q1E9 elements. It is known that these
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(a) Undeformed mesh (b) Q1 elements (c) IGA2 elements

Figure 8: Coarsest full model for the compression test. Exploiting symmetry allows the use of
only one quarter of the model.

elements can lead to hour-glassing when subjected to excessive compressive forces, see Wriggers
(2008), which is not the case in the set-up considered here.

In the finite element model only two of the cube’s faces are free to deform, while the other
surfaces are subject to Dirichlet boundary conditions. The base is fixed, two sides are controlled
by symmetry conditions, and the displacement of the top surface is prescribed. Of these two free
surfaces, one or both may be enriched with a NURBS patch. Although it is possible to derive
an element with two enriched sides, in a first approach this element proved quite stiff in both
compression and tension. Due to this, in the case that both sides are enriched, the elements
along the edge of the cube are split diagonally into two prisms with one enriched side each.
In the current implementation, the prisms are modeled as degenerated hexahedra, although
the derivation of isogeometrically enriched elements other than hexahedra, such as prisms, is
possible.

In the following, the enriched meshes are denoted Q1N2, Q1E9+Q1N2, and Q2N2. The meshes
denoted Q1E9+Q1N2 are constructed with Q1N2 element on one or both of the free surfaces
and Q1E9 elements for the rest of the body. An isogeometrically enriched element with en-
hanced assumed strain, Q1E9N2, has not yet been developed. Additionally, a fully isogeometric
discretization with quadratic NURBS is considered, denoted IGA2. For the convergence studies,
a solution computed with fully isogeometric elements on a very fine mesh with approximately
1× 106 degrees of freedom is used as a reference solution.

4.2 Evaluation of compression test

For the coarsest mesh, the undeformed and deformed configuration is shown in Figure 8 for
tri-linear Lagrangian and isogeometric elements. The reaction force Fz in consequence of the
compression is used as a quantity to measure the convergence of the different discretizations.
Figure 9 shows the convergence of the reaction force Fz for the different element types with
respect to the number of degrees of freedom. Even though the enhanced assumed strain elements
have the same number of global degrees of freedom as the standard tri-linear elements, one must
keep in mind that these elements come at a higher computational cost. For each element, static
condensation is performed at the element level for the nine additional degrees of freedom.

First, we note that all element types converge to the same solution, which can be seen in
Figure 9d. Only the element types Q1, Q1E9, Q2, and IGA2 are plotted here. The enriched
elements lead to very similar results as can be seen by the convergence plots in Figure 9a - 9c.
These are discussed in the following, and are omitted in Figure 9d for visibility. Regarding
accuracy for a given number of degrees of freedom the fully isogeometric discretization and the
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(d) Reaction force

Figure 9: Convergence of reaction force Fz with respect to the number of degrees of freedom
for compression, see Figure 8.

enhanced assumed strain elements offer the best performance. It should also be noted that the
enhanced assumed strain elements even outperform the quadratic Lagrange elements.

Considering the enrichment of tri-linear (Q1) and quadratic (Q2) Lagrange elements in Figure 9a
and 9c, one can see that the enrichment of the faces only increases the accuracy marginally.
This result can be explained by the fact that only volume integrals are evaluated within the
computation. The smooth surface description does not lead to a considerable advantage for this
example.

For the enhanced assumed strain elements in Figure 9b, the enrichment of one or two faces even
leads to worse results than the Q1E9 elements without enrichment. The EAS method is not
applied to the layer of enriched elements which are based on the Q1 elements, which explains
the stiffer behavior. Figure 10 shows the convergence of the Q1 and Q1E9 elements with and
without one enriched side and that of the Q2 elements. Even though the relative error in the
reaction force increases by adding an enriched element layer to the Q1E9 discretization, the
result is still almost as good as that of the Q2 mesh. We believe that the extension of the
enhanced assumed strain method to the isogeometrically enriched Q1N2 elements would lead
to results as in the Q1 and Q2 cases, where the enrichment leads to slightly better results.
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Figure 10: Influence of the isogeometric enrichment and the EAS method

(a) Undeformed mesh (b) Q1 elements (c) IGA2 elements

Figure 11: Coarsest full model for the extension test. Exploiting symmetry allows the use of
only one quarter of the model.

4.3 Evaluation of extension test

As in the previous example, the reaction force Fz is used as a quantity to measure the con-
vergence of the different discretizations. However, enhanced assumed strain elements Q1E9
are not considered in this case as the standard linear elements perform reasonably well. The
undeformed and deformed configurations are shown in Figure 11 for tri-linear Lagrangian and
isogeometric elements on the coarsest mesh. Figure 12a and 12b show the convergence of the
reaction force Fz for linear and quadratic Lagrange elements with and without isogeometrically
enriched sides and for tri-variate NURBS meshes with respect to the number of degrees of free-
dom. The force Fz is plotted with respect to the number of degrees of freedom in Figure 12d
for Q1, Q1N2 on two sides, Q2, and IGA2 elements.

While the enrichment technique has a very slight negative influence on quadratic Lagrange
elements Q2, the linear Lagrange elements Q1 benefit from the more accurate surface descrip-
tion. On coarse meshes, the relative error of linear Lagrange elements is reduced by a factor
of approximately 2 with Q1N2 elements on one side, and approximately 3 with Q1N2 elements
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Figure 12: Convergence of reaction force Fz with respect to the number of degrees of freedom
for tension.
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on both sides. This substantial improvement can be seen in Figure 12c, where this factor is
plotted with respect to the mesh number. The increase in degrees of freedom for the enriched
elements is negligible due to the fact that the degrees of freedom in the volume increase with
the power of 3, while the surface degrees of freedom only increase quadratically as the meshes
are refined. With increasing mesh refinement, the improvement decreases, reaching 1.3 and 2.0
in this example.

4.4 Interpretation

The study shows that the enrichment of surfaces can lead to improvements in accuracy compared
to standard linear Lagrange meshes, even when only volume integrals are considered. This is
especially the case for coarse meshes. The large deformation in the extension test is captured
more accurately by the isogeometrically enriched elements, leading to higher accuracy. However,
in cases where finite element technology such as the enhanced assumed strain method is used
to overcome an overly stiff element behavior, the results may worsen with Q1Np elements on
the surface when only volume integrals are involved. It is emphasized that this is due to the
linear Lagrange base of these elements, not the enrichment itself. The development of enriched
elements with enhanced assumed strain, Q1E9Np elements, is a task for future research and
could overcome these deficiencies in the volume-dominated case. In the following numerical
examples that focus on the surface effects, the one layer of enriched elements has no deteriorative
influence on the results.

One must also remember, that in the example at hand the mesh is very simple and a tri-variate,
one-patch NURBS discretization exists. In general, the discretization of three-dimensional vol-
umes by means of continuous isogeometric basis functions poses a challenge. In this case, one
may only be able to resort to standard Lagrangian elements for the volumetric meshing, in
which case the enriched elements pose a viable alternative. As long as no locking effects must
be expected, Q1Np elements offer the most efficient option.

The enriched elements become more advantageous when a surface integral is involved. If one
were for instance to replace the Dirichlet boundary condition on the upper surface with a
prescribed normal surface pressure - a condition analogous to normal contact - the C1-continuous
surface representation of the enriched elements would prove beneficial and lead to more accurate
results, as the following examples demonstrate.

5 Numerical contact and debonding examples

Three numerical examples are considered in this section. In all cases, the results of the isogeo-
metrically enriched surface meshes (Q1Np) are compared to enhanced assumed strain tri-linear
Lagrange finite element meshes (Q1E9) and to tri-variate NURBS meshes (IGAp). The first
example examines mixed-mode debonding of two deformable, three-dimensional bodies. Fric-
tionless sliding contact between two deformable, three-dimensional bodies is considered in the
second example. In the third example, friction is added to the previous case, leading to tangen-
tial sticking and sliding contact in addition to normal contact.

5.1 Mixed-mode cohesive debonding

The debonding of two initially flat bodies, an elastic strip and an elastic plate, is considered,
depicted in Figure 13. The upper strip B1 (with dimension 19.5L0 × 4L0 × 1L0) is rotated by
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Figure 13: Set-up of the cohesive debonding problem and resulting deformation shown for the
coarsest isogeometrically enriched mesh (Q1E9+Q1N2) for a prescribed vertical displacement
of 0L0, 7.75L0, and 15.5L0. The coloring represents the first stress invariant I1 = trσ/E0.

mesh elements
B1 B2

1 10× 2× 2 10× 10× 2
2 20× 4× 4 20× 20× 4
3 40× 8× 8 40× 40× 8

Table 1: Number of elements in meshes used for the cohesive debonding problem.

43◦ with respect to the lower plate B2 (with dimension 20L0×20L0×1L0) to create the general
case of non-conforming meshes in the interface and an asymmetric set-up. Initially 21% of the
interface is debonded, with the cohesive zone acting only on the rest of it. The parameters for
the cohesive zone model in Eq. (31) are g0 = 0.08L0 and T0 = 0.1E0, with the parameters for
length L0 and stress E0 normalizing the problem. At the initially debonded side, a vertical
displacement is prescribed to an edge of the upper strip, while the lower strip is fully fixed
along one side. The loading leads to a twisting motion during peeling and large deformation of
both bodies, as Figure 13 shows. Hyperelastic material behavior according to the Neo-Hookean
material model in Eq. (32) is considered for both bodies with ν = 0.3. Young’s modulus of the
plate is E2 = E0, while the strip is three times as stiff with E1 = 3E0.

Due to the strong cohesive forces, the strips undergo torsion and large bending, leading to shear
locking in the linear Lagrange elements. The fully isogeometric discretization on the other hand
does not suffer from this drawback. To overcome locking, the enhanced assumed strain method
by Simo and Armero (1992) is used for all tri-linear Lagrange elements. As has been discussed in
the previous section, no treatment of shear locking has been developed for the layer of enriched
elements yet. This results in some shear locking of these elements which is due to the linear
Lagrangian part of the element, not the enrichment itself.

Three nested meshes are considered here, which are listed in Table 1. The number of degrees
of freedom for the different discretizations is listed in Table 2. For each level of refinement,
the number of degrees of freedom of the discretizations based on linear Lagrange elements and
the purely isogeometric discretization is of approximately the same magnitude. The number
of degrees of freedom increases drastically for the discretizations including quadratic Lagrange
elements. For this reason, the values in parentheses refer to meshes for which no computation
was performed.

To prevent the bodies from penetrating, a penalty method for normal contact with εn = 10E0/L
2
0
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mesh number of degrees of freedom

Q1E9
Q1E9 Q1E9 Q1E9.1

Q2 Q2N2 Q2N2.1 IGA2
+Q1N2 +Q1N3 +Q1N2.1

1 1386 1500 1626 2772 8190 7128 8400 2304
2 8190 8400 8622 13104 55350 51048 55752 11088
3 55350 55752 56166 73800 (404838) (387576) (405624) 65520

Table 2: Degrees of freedom in meshes used for the cohesive debonding problem. No computa-
tion was performed for values in parentheses.

(a) Q1E9 mesh (b) Q1E9+Q1N2 mesh

Figure 14: Comparison of the deformed surfaces at a prescribed displacement of 6.4L0 for mesh
1. The coloring is the same as in Figure 13

is applied to the elements in the interface additionally to the cohesive traction. The surface
integrals, involving contributions from the exponential cohesive zone model and normal contact,
are evaluated using 10× 10 quadrature points on each surface element.

On the coarsest mesh all computations show high fluctuations in the peeling force and fail
before the strips are completely debonded. The mesh is to coarse to capture the debonding
law correctly, which leads to sudden, unstable debonding of individual surface elements5. With
these coarse meshes however the difference between a linear surface representation and the
isogeometric enrichment can clearly be seen. A close-up of the deformed surfaces during peeling
is shown for a linear and an isogeometric surface description in Figure 14. The smooth cohesive
forces according to Eq. (31) should also lead to a smooth deformation and stress field. However,
on the faceted surface of the linearly meshed plate a peak stress value is clearly visible in the
peeling front where the deformation cannot be captured accurately. In contrast, the isogeometric
surface discretization results in both a smooth deformation and stress field.

For all element choices except for the tri-linear enhanced strain Q1E9 elements which fail,
mesh 2 allows the computations to run until the strips are entirely debonded. This is shown
in Figure 15a and shows the benefit of the smooth and higher order surface discretization of
the enrichment. The reaction force still shows high fluctuations in all cases, which are only
diminished to an acceptable level with mesh 3, as can be seen in Figure 15b. On this mesh,
the force-displacement curves are almost indistinguishable, except for the small difference in
the peak value between the purely isogeometric mesh and the other meshes, where some shear

5In order to continue quasi-static computations, arc-length methods are needed, see Crisfield and Alfano
(2002)
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Figure 15: Peeling force for different element types.
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Figure 16: Peeling force for quadratic Lagrange elements on mesh 2.

locking is still present. It is worth noting that this also applies to the discretization using only
enhanced assumed strain elements Q1E9, not only the enriched meshes.

To eliminate locking in these cases, quadratic Lagrange elements (Q2) can be used in the
bulk and as the base element for the enrichment (Q2N2). By doing so, the resulting peeling
forces of the quadratic isogeometric mesh IGA2 and the enriched elements Q2N2 become almost
indistinguishable, as is shown in Figure 16 for mesh 2. These meshes use identical contact surface
representations and only differ in the bulk. It should be noted that the discretizations using
quadratic Lagrange elements require 4.6 to 5 times as many degrees of freedom as quadratic
NURBS in this case, but offer simpler mesh generation for general geometries.

The gray reference line without any markers in Figure 16 is the purely isogeometric discretization
on the next finer mesh, mesh 3. The total number of degrees of freedom is only slightly higher
than that of the quadratic Lagrange discretizations on mesh 2. One can observe that the peeling
problem depends very much on the number of degrees of freedom or respectively the number of
nodes on the surface, summarized in Table 3 for a surface discretized by n× n elements. Using
only quadratic Lagrange elements (Q2), the results are very similar to these obtained with the
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element type number of nodes

Q1 (n+ 1)2

IGA2 / N2 (n+ 2)2

Q2 (2n+ 1)2

N2.1 (2n+ 2)2

Table 3: Number of nodes for a surface discretized by n×n elements for different element types.

Figure 17: Set-up of both the frictionless and frictional sliding problem shown for the coarsest
mesh.

Q2N2.1 meshes. The Q2N2.1 elements have a cubic NURBS surface, but are only C1-continuous
across element borders. They are created by order elevating the quadratic NURBS patch once
after knots have been inserted to create the desired number of elements, see subsection 2.5. Both
meshes, Q2 and Q2N2.1 have a similar amount of degrees of freedom on the contact surface.
Because nested meshes are used, the reference line corresponds to an isogeometric discretization
with twice as many elements in each dimension. Thus, regarding Table 3, the IGA2 mesh with
2n × 2n elements on the surface has the same number of nodes on the surface as the Q2N2.1
discretization with n× n elements.

In summary, one can note that all isogeometric enrichments perform well in terms of reducing
the reaction force oscillation, leading to a more robust computation than with linear Q1E9
elements. The additional computational cost is very low for Q1-based elements, as is shown in
Table 2. However, all Q1E9-based meshes, also the Q1E9 meshes without enriched surfaces,
suffer from some shear locking. For a given number of degrees of freedom, the IGA2, Q2, and
Q2N2.1 meshes yield the best results for this example. The quadratic Lagrange elements Q2
have the drawback, that edge and corner contact must be treated in the penalty method used
to avoid penetration, making it the least favorable of the three choices. For general geometries,
a purely isogeometric mesh may not be available, in which case a Q2N2.1 mesh should be
considered if shear locking is an issue.

5.2 Frictionless sliding contact

The problem set-up, depicted in Figure 17, is as follows: A vertical displacement is applied to the
top of body B1, a thick, hollow hemisphere with radius L0 and thickness 1/3L0, which presses
it into body B2, a cube with edge length 2L0 and a fixed base. Following the downward motion,
a rotation of 180◦ is prescribed on the top of the hemisphere, leading to frictionless sliding
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mesh εn elements number of degrees of freedom

[E0/L
2
0] B1 B2 Q1E9

Q1E9 Q1E9 Q1E9
IGA2

+Q1N2 +Q1N3 +Q1N2.1

1 125 3× 3× 1 2× 2× 2 177 225 285 402 417
2 250 7× 7× 2 4× 4× 4 951 1035 1131 1752 1620
3 500 11× 11× 3 8× 8× 8 3915 4047 4191 5940 5535

Table 4: Meshes used for the sliding contact problems.

between the two bodies. The Neo-Hookean material according to Eq. (32) with ν = 0.3 and
E1 = 5E0 for the hemisphere and E2 = E0 for the cube is used. Normalization of the problem is
thus achieved with the length L0 and pressure E0. Normal contact is treated with the penalty
method, as described in section 2.6. The penalty parameter εn is increased proportionally to
the average element length. Three meshes of increasing refinement are considered, which are
summarized together with the penalty parameter in Table 4. The problem was also studied
in Corbett and Sauer (2014), where only the enrichment Q1N2 was compared to tri-linear Q1
elements. Here, the Q1N2.1 enrichment with Q1E9 elements in the bulk is considered, which
led to very good results in the 2D cases studied in Corbett and Sauer (2014). Also, the results
are compared to tri-variate NURBS meshes to investigate the influence of the higher-order bulk
integration on the surface quantities. As in the previous example, enhanced assumed strain
elements Q1E9 are used for all tri-linear elements to diminish locking effects.

One of the surface quantities of interest is the torque around the z-axis, which should be zero
for the frictionless case. For mesh 2, the oscillation of the torque is shown for the meshes with
an isogeometric surface in Figure 18a6. The periodicity of the resulting torque with a frequency
of 90◦ and the symmetry about 90◦ are both direct consequences of the smooth surface meshes,
which have the same properties with respect to the axis of rotation. In contrast, although the
faceted linear meshes are also symmetric, the resulting torque does not inherit this property
due to interlocking elements, as has been discussed in Corbett and Sauer (2014). The results
obtained with Q1E9+Q1N2 and IGA2 meshes, which both use identical surface meshes in the
contact routine, are very similar. This supports the proposition that improving the surface
discretization has a large influence on the accuracy of the results, while the bulk discretization
is of minor importance in this case. Considering the number of degrees of freedom of mesh
2, the tri-variate NURBS discretization IGA2 has almost 60% more degrees of freedom than
the enriched Q1E9+Q1N2 mesh, see Table 4. Concerning efficiency, the contact integrals are
identical for both discretizations while the computational cost to evaluate bulk elements is
obviously higher for the 27-control-point IGA2 element than for the 8-node Q1E9 element or
the 13-node enriched element Q1N2 on the surface.

The values for the Q1E9 elements are omitted in Figure 18a as they are about one order of
magnitude larger than those of the meshes with an isogeometric surface representation. This
can be seen in Figure 18b, where the convergence of the torque with respect to the number of
degrees of freedom is plotted. The convergence rate is the same for all element types, but there
is a large difference in the absolute values. In this case, the cubic enrichments Q1E9+Q1N3
and Q1E9+Q1N2.1 are the most accurate.

In contrast to the torque, the contact force does not only depend on the surface deformation,
but also on the bulk deformation. As has been shown in the element study in section 4, lin-
ear Lagrange elements with and without isogeometric enrichment are rather stiff for coarse

6The two-half-pass algorithm evaluates the forces separately on each surface. The torque evaluated on the
hemisphere is plotted as a solid line, the dashed line corresponds to the cube.
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Figure 18: Frictionless sliding contact: torque around z-axis.

meshes. Enhanced assumed strain elements (Q1E9) can overcome this, but in the enriched case
a layer of isogeometrically enriched elements without the enhancement remains. Due to this,
the tri-variate isogeometric discretization converges quicker than the isogeometrically enriched
discretizations. Despite using the enhanced assumed strain method, the very poor approxima-
tion of the hemisphere’s surface with linear elements on coarse meshes together with the limited
possibility for the cube’s surface to deform accordingly, leads to a very poor computation of the
contact forces for Q1E9 elements. This can be seen in Figure 19a, where the average contact
force is compared to a reference solution computed with IGA on a fine mesh. The average con-
tact force lies below the reference solution on the coarsest Q1E9 mesh and above the reference
value on mesh 3. This pass through the reference value leads to the seemingly small error of
the Q1E9 mesh 2 in Figure 19.

Comparing the results for the contact force of the isogeometrically enriched elements with tri-
linear Lagrange and tri-variate NURBS discretizations, the enriched elements offer a compromise
between both. IGA does deliver better results, but requires 3D meshing which is challenging
for general geometries. Using the isogeometric element enrichment, the contact force response
is smoother than with a faceted bi-linear surface and converges smoothly, even though the
convergence rate is lower than with pure IGA. The use of quadratic Lagrange elements for the
bulk and in the enrichment, Q2N2 elements for example, would come at the cost of significantly
higher computational effort and do not seem necessary here.

5.3 Frictional sliding contact

The problem set-up is the same as in the previous example, with the exception that frictional
contact is considered during the twisting of the hemisphere. During the downward motion
the contact remains frictionless. Frictional contact is modeled according to section 2.7 with
the tangential penalty parameter εt = εn. The element types and discretizations also remain
unchanged compared to the frictionless case, summarized in Table 4.

After the downward motion, initially the entire interface is considered to be in a sticking state.
As the rotation progresses, the outermost points start to slide, with the sticking–sliding bound-
ary moving inward with increasing rotation. After approximately 120◦ all integration points on
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(a) Error in average contact force.
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(b) Maximum error in contact force.

Figure 19: Frictionless sliding contact: convergence of contact force w.r.t. the reference solution.
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(b) Convergence with mesh refinement.

Figure 20: Frictional sliding contact: torque around z-axis.

both surfaces are sliding. Up to this point the torque around the z-axis increases continuously
and upon reaching the sliding state should remain at this maximum value for the rest of the
computation. This is shown in Figure 20a for mesh 2. The faceted surfaces of the Q1E9 mesh
clearly lead to poorer results than the smooth surfaces discretized with isogeometric basis func-
tions. The large oscillation of the torque for Q1E9 elements is due to interlocking of elements.
Eventually, these elements separate and spring back. This large relative tangential motion be-
tween two surface points is challenging for frictionless contact. For frictional contact it becomes
even more challenging, as friction is path-dependent and relies on the accurate computation of
the tangential slip.

As has been shown in the previous example 5.2, the computed contact force Pz is less accurate
for Q1E9 elements and enriched elements than for the tri-variate isogeometric discretization.
The frictional traction depends directly on the normal contact pressure, see section 2.7. This
means that while the oscillation of the torque value can be decreased with the isogeometric
element enrichment, the convergence of the absolute value depends on the bulk reaction as
well as the surface. In Figure 20b the maximum deviation of the torque with respect to the
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elements max(‖tx‖)
∈ ∂eB1 ∈ ∂eB2

Q1E9 0.296 0.175
IGA2 0.217 0.175

Q1E9+Q1N2 0.235 0.177
Q1E9+Q1N3 0.183 0.148

Q1E9+Q1N2.1 0.280 0.237
reference 0.292 0.291

Table 5: Maximum absolute value of the tangential traction component tx on mesh 2.

average torque between 120◦ and 180◦ of the respective mesh is plotted over the number of
degrees of freedom. This shows the reduction of the torque’s oscillation with increasing mesh
refinement, independent of the absolute, pressure-dependent value of the torque. With respect
to the absolute value, the behavior is comparable to the convergence of the contact force in the
previous example.

Besides evaluating the global response, one can also examine local effects. Friction leads to
tangential traction on the contact surfaces, depicted in Figure 21 after a frictional rotation
of 180◦. The tangential traction component tx = tt · ex is plotted in a top-down view on the
deformed surfaces ∂eBk, which have been moved apart for visibility. The post-processing scheme
proposed in Sauer (2013) is applied to the raw traction data given at the quadrature points,
leading to a smooth distribution. Figure 21f shows the solution on a fine mesh, computed with
Q1E9+Q1N2.1 elements which is used as reference, while the other results are obtained on
mesh 2. The poor approximation of both, the deformation and the traction field tx, by the
Q1E9 mesh in Figure 21a is clearly visible. Figures 21b to 21e show surfaces discretized by
isogeometric basis functions. Compared to the reference solution, the deformation field is in
good agreement.

However, the traction field still shows large differences, with respect to both the maximum value
and the contours. Increasing surface continuity leads to increasing smoothing of the results,
as can be seen in the difference between Figure 21c and 21d for the Q1N2 and Q1N3 surface
meshes. The sharp boundary between the surface in contact ∂cBk and the rest of the surface is
not represented well by these meshes and the peak value becomes smaller as the traction field
is smoothed. The best result in terms of the traction field is obtained by the Q1E9+Q1N2.1
mesh. The reduced basis span and increased number of degrees of freedom on the surface lead
to a good approximation of the traction field even on a coarse mesh.

The maximum traction values are summarized in Table 5 and support the effects described
above. Interlocking of elements leads to spurious tangential tractions on the faceted Q1E9
surface and the seemingly good result on the hemisphere.

In summary, the isogeometric element enrichment makes the computation more robust due to
the lack of interlocking elements, simplifies contact treatment as no corner or edge contact oc-
curs, and leads to less oscillation in the reaction forces. These benefits can also be obtained
with a purely isogeometric mesh, however on more complex geometries the enrichment has the
advantage of simpler mesh generation. Concerning the global response, the linear Lagrange
element that the enriched elements are based on can lead to slower convergence than in the
purely isogeometric case. A solution is to use the computationally more expensive isogeometri-
cally enriched elements based on quadratic Lagrange elements. Locally the enrichment has the
advantage that a surface discretization with many degrees of freedom, such as Q1N2.1, can be
used without increasing the number of degrees of freedom in the rest of the body, as it would
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(a) Q1E9 (b) IGA2 (c) Q1E9+Q1N2

(d) Q1E9+Q1N3 (e) Q1E9+Q1N2.1 (f) reference solution

Figure 21: Frictional sliding contact: top–down view of tangential contact traction component
tx = tt · ex after rotation of 180◦ for mesh 2. For visibility, only the deformed surfaces ∂eBk are
shown and have been moved apart. The traction is smoothed according to the post-processing
scheme proposed in Sauer (2013).
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be the case with a pure IGA mesh. The advantage of higher accuracy on the surface has been
shown in the case of the tangential traction field.

6 Conclusion

Several new aspects of isogeometrically enriched elements, introduced in section 2, have been
analyzed and discussed in this work. The element study in section 4 shows that the enriched
elements converge to the correct solution with increasing mesh refinement. Even if no surface
effects are present and only volume integrals are solved in the computation, enriched linear
Lagrange finite elements (Q1N2) lead to more accurate results on coarse meshes than standard
tri-linear elements (Q1). In the example in section 4.3 the relative error in the reaction force
could be reduced by a factor of 3.

In the case of compression, enhanced assumed strain elements (Q1E9) lead to very good results.
No such enhancement has been developed yet in conjunction with the enrichment technique,
so that the enriched layer on the surface is currently still based on linear Lagrange elements.
The development of an isogeometrically enriched enhanced assumed strain element, Q1E9Np,
seems promising and remains a topic for future research. Good results are also achieved by
enriched quadratic Lagrange elements (Q2N2), but the gain over standard quadratic Lagrange
elements (Q2) in problems that do not require surface continuity is negligible. We do note
however, that the presented enrichment technique only requires an isogeometric surface mesh
and allows volumetric meshing of arbitrary geometries, as is demonstrated in section 3. A layer
of enriched hexahedral elements on the surface can be combined with arbitrary elements in the
bulk, including hexahedra, tetrahedra, prisms and pyramids.

The numerical examples in section 5 show that for problems dominated by effects on the surface
or where surface quantities are of interest, the enrichment technique offers high accuracy at low
additional computational cost. Continuity of C1 or higher can be achieved across element
boundaries and the number of degrees of freedom on the surface can be increased by means of
order elevation without changing the bulk mesh.

Summarizing the results, one can say that the enrichment technique offers benefits for general
problems, especially on coarse meshes and problems with large deformations, see Figure 12. Its
major benefit lies in solving surface-dominated problems. Here, the higher continuity and order
of interpolation on the surface combined with computationally inexpensive and simple Lagrange
elements in the bulk offer a great advantage over other methods. A current drawback of the
enrichment technique with linear Lagrange elements is that the elements can show the same
shear locking behavior as tri-linear elements. To overcome this, quadratic Lagrange elements
can be used as base for the enrichment. It is emphasized that the locking is not a consequence
of the enrichment but comes from the underlying linear interpolation. In future research, the
development of locking-free enriched elements could lead to a more efficient treatment of these
cases.

Finally, the proposed elements are also expected to behave advantageously when applied to
other physical problems, like fluid-structure interaction, free-surface flow, electrostatic and elec-
tromagnetic interaction, or acoustics.
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